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ABSTRACT

The response of a series of single, fully-fixed, panels to turbulent

boundary layer excitation has been measured in a subsonic wind tunnel for
flow velocities of 329 ft/sec and 540 ft/sec, and boundary layer thicknesses
in the range 0.4 inch to 1.4 inches. When the results are compared with

theoretical predictions based on simply supported mode shapes, the magnitude

of the displacement is overestimated but the effects of boundary layer

thickness, pressure field convection direction, panel aspect ratio and static

pressure differential are well predicted. The effect of flow velocity is

not predicted accurately.

The boundary layer thickness affects the panel vibration mainly through

the pressure spectrum, the modal response increasing to a maximum when the

spectral density at the natural frequency reaches a maximum. The overall

displacement is determined by the dominant low order modes and reaches a

maximum for thick boundary layers.

The maximum response in some modes of a panel can occur at an angle of

convection 00 < e < 900, but in other modes the maximum occurs at e = 00 or

900. The angle of convection has only a small effect on the (1-1) mode.

The static pressure differential increases the panel natural frequencies

and decreases the response, the latter change being due mainly to the change

in the panel stiffness.

The theory overestimates the effect of flow velocity near coincidence

and underestimates the effect elsewhere. The error may be caused by the

assumed theoretical mode shape but more experimental data is required.

Random techniques are used to measure the panel damping in the presence

of an airflow, and the results show a general increase over the zero airflow

values. In several cases the change is small, but restrictions on the use

of the methods prevent a detailed investigation.
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z Defined by equation (3.3).

Z Constant; equation (4.38) et seq.

SZ1(W),Z (W) Frequency response functions of analysing filters.

Z*(W) Complex conjugate of Z l(w).

a Two-dimensional mode order a - (m,n).

al, a2  Constant coefficients in longitudinal narrow band pressure
cross correlation coefficient; equations (A.19), (A.20).

a a• 4 Constant coefficients in lateral narrow band pressure cross
correlation coefficient; equations (A.21), (A.22).

a Constant coefficient in narrow band convection velocity
function; equation (A.23).

Two-dimensional mode order 8 (r,s).

'y Measure of inverse radius of turbulence component.
th

Eigenvalue corresponding to the free vibration of the m order
Ym mcde of a string.

y' Defined by equation (C.2).

Y! f Defined by equation (C.3).
2

S'Defined by equation (C.4).• Y3

r Measure of correlation area of the pressure field; r =

6 Bouidary layer thickness.

6* Boundary layer displacement thickness.

6 Viscous damping factor in mode of order a.

• Am Defiied by equation (2.57).

=X/twI

Standard deviation error for G(f); Section B.1.

Pressure correlation length defined by cos 0.
"Uc
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SYMBOLS (Cont.)

•m~nValue of C at f -fron

A 5(nln3) Separation in y- y,3 direction.

SeAngle between positive xI direction and flow direction, i.e.
S~angle between positive xI and y! directions.

6 t Mean statistical lifetime of an eddy.

()(f) Defined by equation (B.1O).

K ,Constant coefficients in narrow band convection velocity

function; equation (A.23).

K Wx' ,x") = i (x")A(x').

Excitation wave length.

Modal wavelength = 2 1/m.
m

A (x) Defined by equation (4.20).

U= U(x) Panel mass per unit area.

Vrv Hysteretic damping factor, or loss factor, for modes of order
r and a respectively. Defined in terms of the complex
stiffness l(l + iv).

Separation in x direction.

p Density.

Po Free stream density.

0£ Radius of curvature of S(p(x'),w(x"),w).

p ( ) Autccorrelation coefficient.

P p( 9,&3,;W) Narrow band pressure cross-correlation coefficient;

equation (A.5).

a Poisson' ratio for the material of the panel.

Time delay.

Tr r 1 + v"; equation (B.9).

Angle of inclination between displacement probe face and
structure.

0(f) Defined by equation (B.1O).

D(- Defined by equation (4.23).

X Off-resonant contribution to vibration in the neighbourhood of
a natural frequency.

X Measured displacement at a frequency removed from any naturalM
frequency.

SXM Mean value of XM from valueo either side of a natural frequency.

Xxi

t-E

i . .. .. .. .... .. .



SYMBOLS (Cont)

*m(x1), r (X) Mode shapes of order m and r in the x, direction.

f •(X3),*s(X 3 ) Mode shapes of order n and s in the x 3 direction.

*a(x), W(x) Panel mode shapes of order a and .

T(f) Defined by equation (B.lO).

W,(' Angular frequency, radians per second.

Wj ,w2  Angular frequencies at half-power points.

Sr ,wa Angular frequencies of modes of order r and a.

Aw Angular frequency bandwidth.

n(-•, 3 ,0) Defined by-equation (A.9).
U

< > Mean value.

I I Modulus.
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CHAPTER 1

Review of Previous Work and the Aims of the Investigation

1.1 Introduction to the General Problem

The study of the response of flexible structures to turbulent boundary

layer excitation became important with the advent of high speed subsonic

passenger carrying aircraft, but the problem has applications also in the

design of missiles and in underwater investigations. The response of the

structure is of direct interest because the turbulent boundary layer might

induce disturbing vibration levels in the neighbourhood of sensitive equip-

ment or might create levels of vibration which, although not very high,

could produce or accelerate structural fatigue because of the long term

exposure. The vibration is of interest also because of the transducer

action in converting the hydrodynamic fluctuations in the boundary layer

into acoustical energy which is radiated into the interior of the body or

into the surrounding fluid. The efficiency of the structure as a transducer

will depend on the response to boundary layer excitation and on the radiation

efficiency of the structure. A study of the vibration of structures exposed

to turbulent boundary layer excitation is essential, therefore, in under-

standing the fatigue and noise radiation problems.

1.2 Review of Previous Work

1.2.1 General Review

The response of structures to random excitation has been studied

theoretically by a number of authors, for a range of excitation conditions

and for structures ranging from strings to panel arrays. In some cases

the aim of the investigation has been the prediction of structural vibration,

whilst in others the work has been extended to include the estimation of the

acoustic radiation from the structure. Experimental investigations are much

smaller in number and the more important ones have been reported during the

progress of the present work. In only two or three cases has thre been

any attempt to compare the measured vibration with that predicted and in two



cases the work was concerned largely with the occurrence of running waves

in the experimental panels.

In the following review of work by other authors it is intended to

restrict discussion to only the more important published results, and to

omit discussion on the acoustic radiation problem.

1.2.2 Theoretical Investigations

The theoretical investigations considered have one common assumption,

that there is no interaction between the plate vibration and the excitation

field. This means that it is assumed that the excitation field is identical

to that on a rigid surface and, for example, instabilities such as panel

flutter cannot occur. With two exceptions the structures are all of finite

size and are in the form of strings, beams, single panels, or panel arrays.

The exceptions are the structures considered by Ribner (1956) and Corcos

and Liepmann (1956) which are infinitely large plates, Corcos and Liepmann

claiming that the assumption is valid since the mean square acceleration,

integrated over the panel area, does not depend significantly on the

boundary conditions. When considering the local vibration the assumption

is not necessarily a valid one and the infinite model does not provide a

good representation of practical structures. For obvious reasons the

infinite panel response spectra will not contain resonance peaks.

IKraichnan (1957) assumed initially that the structure was a semi-infinite

plane but, when considering the structural vibration, he divided the plane

into a series of independent square panels so that the analysis was

essentially that of a finite structure. In all analyses except that of

Dyer (1958) it was assumed that the vibrating structure was bounded on

each side by a semi-infinite space, and even then the case of a panel

radiating into a closed box was considered by Dyer only as a special

radiation case.

The analysis of the finite structure was carried out in all

investigations by the use. of the normal mode approach and the majority of

authors assumed that the structural boundaries satisfied the conditions

for simple supports. This assumption does not affect the main conclusions

I -2-
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of the investigations, but it simplifies the theoretical analysis.

Bozich (1964) has compared results for simply-supported and fully fixed

plates subjected to acoustic excitation and has shown that, exce- for

a very rapidly decaying excitation field, the assumption of simply-supported

V boundaries overestimates the response by a factor of up to two. However,

the variation of response with frequency is similar for the tvo edge

conditions.

The derivation of the structural response function differs from author

to author but it is possible to separate the methods into two geaeral classes

in which the response is expressed in either the frequency or the time domain.

The two alternatives are in fact equivalent because the analysis can be trans-

formed from one domain to the other by Fourier transformation, but differences

do arise in the specification of the excitation function. In the time

domain the excitation is defined in terms of the oveiall pressure cross-

correlation function R (&I,ýS,T) and in the frequency domain in terms of
p

the pressure cross-power spectral density function S (Rl,•S,0). The
p

theoretical investigations contain several types of random excitation but

interest in the present discussion is centred primarily on acoustic and

turbulent boundary layer pressure fields. In some investigations, particularly

the early work of Ribner (1956), Corcos an" Liepmann (1956), Lyon (1956) and

Kraichnan (1957), there were only simple attempts at representing the boundary

layer pressure field and the results were published in general terms using

non-dimensional parameters. Later work contained attempts to represent

the pressure fluctuations in a more realistic manner but, following the

lead of Dyer (1958), complications in analysis were reduced by adopting a

delta function representation of the boundary layer cross-correlation function.

This simplification was restricted to the spatial terms except in the work

of Eringen (1957) who used a delta function, also in the time domain. Usually

it was assumed that the correlation coefficient decayed exponentially with

time. Thus the boundary layer pressure cross-correlation function proposed

* by Dyer (1958)

cp(xlx 3.t) P(xl+&1,X3+&39 tNT)> "P 2> exp (-Y Q((C1ZcT)+2 3
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was reduced by Dyer, and later by other authors, to the form

<P(x 1 ,x3 ,t)p(x1 +t 1 , x3+&3 , t+T)> = <p2> r6(UI_ ucT)6(t 3 )e t

(1.2)

where 1 is a measure of the radius of a turbulence "eddy", et is the mean
Y

statistical lifetime of the turbulence, <p2 > is the mean square boundary2w
layer pressure fluctuation, r = 2ff is defined to be a measure of the

correlation area of the pressure field, and U is the overall convection
c

velocity.

The parameters r, y, et and Uc in equation (1.2) are overall values

and are independent of frequency, but t and y (and hence r) can be expressed,

empirically, in terms of the boundary layer displacement thickness 6*.

For simplicity the overall convection velocity Uc is assumed to be independent

of t, although boundary layer measurements (e.g. Bull (1963)) show this to

be incorrect. The assumption of a constant velocity U can be interpreted
c

to imply that pressure eddies are convected at a speed which is independent

of frequency, again in contradiction to measurements (Figure A.7).

In the frequency domain the pressure cross-power spectral density
function Sp(&1,&3,w)_ has not been measured directly but it can be replaced

ppby the product of the power spectral density function S p(w) and the narrow

band cross correlation function, both of which have been measured. Tack and

Lambert (1962) adopted a system which lies between the frequency and time

domain methods and is not legitimate in a strict sense. The analysis was

carried out in the time domain but in the final results it was assumed

that r and et in equation (1.2) were frequency dependent and corresponding

empirical values were inserted. However,-by definition, the right hand

sides of equations (1.1) and (1.2) are independent of frequency.

Working in the frequency domain Powell (195 8 a) expressed the displace-

ment power spectral density funct;on for a single panel in terms of a

double summation of the normal modes of order a and S. The summation was

-'4-



separated in two parts, a = a and a # a, and the associated terms were

identified by Powell as the joint acceptance and cross acceptance respectively.

Powell did not substitute particular representations for the excitation but

showed that, in general, the cross terms could be neglected if the damping

was sufficiently small, and that if the response was averaged over the panel

surface, the cross terms would have a zero contribution due to the orthogonality

property of the modes. In later work, Powell (1958b) used the general dis-

placement power spectral density function to consider the vibration of strings

under various random loads, and discussed the application to aircraft

structures excited by jet noise. Nash (1961) obtained a displacement power

spectral density function similar to that of Powell (195 8 a) but the method

of derivation differed in that the analysis was carried out initially in the
time domain and then was transformed to the frequency domain. Nash did not
take the analysis much further than Powell, extending it only to consider
the case of an excitation cross-correlation function separable in the time
and space co-ordinates. He applied it in particular to a spatially uniform
load in which the excitation space correlation coefficient was constant, and
thus was not representative of a boundary layer pressure field.

The work of Powell was repeated by White (1962) for the case of strings
with fixed or flexible supports, the excitation being in the form of

Ssinusoidal components convected with a velocity independent of frequency.
The flexible supports were introduced as an approximation to the type of
supports achieved in practical structures. The results of White illustrate
how the effect of the cross terms depends on the position along the beam,

and show the importance of coincidence between the mode and excitation.
White shows that coincidence occurs when the excitation convection velocity
and the flexural velocity in the structure are equal and when the ratio of

r the string length L to the excitation wavelength A is given approximately by
L ._y L

-. m
A 2•

where y is the eigenvalue corresponding to the free vibration in the mth
mmm

order modes. For a fixed end string ym and - - which corresponds
m L Ato results in Chapter 2.

-5-
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Similar work was carried out on beams by Barnoski (1965) in an

analysis of the response of single degree of freedom and continuous

systems to deterministic and random excitation. Barnoski did not con-

sider the case of a convected excitation field but proposed the reduction

of a continous spatially correlated loading into a set of correlated

discrete loadings, as an approximate solution in the case of complex mode

shapes and spatial correlation functions. This method does not seem to

have application in boundary layer induced vibration problems.

An extension of the analysis to include a multi-support system was

carried out by Mercer (1965) when the response spectrum was considered for

a nine bay beam exposed to a convected excitation field similar in form to

boundary layer turbulence. The variation of response with convection

speed was illustrated and the relative magnitudes of the joint and cross

terms were compared showing that in general the cross term contributions

were not significant for the lightly damped structures. The response was

calculated for the first band of nine modes bounded by the first order

stringer torsion and bending modes, and the results showed trends similar

to those for a single panel. This was particularly true for the stringer
i torsion mode which corresponds to the 9t order mode of a simply supported

single beam. However, the single beam and the multi-beam do differ in one

respect. Within one pair of bounding modes, the modal wavelength increases

with natural frequency from a wavelength equal to two bay lengths to an

effective wavelength equal to twice the overall length of the array. Thus

there is a much greater opportunity for one mode to be near coincidence

than in the case of a single beam where modal wavelength always decreases

as frequency increases.

In time domain analysis, Lyon (1956) investigated the mean square modal

response of a string exposed to several forms of random excitation including

decaying turbulence convected along the string at a constant speed. It was

assumed that the pressure field was purely random in space so that a

correlation function with a delta function spatial term was used. The results

show the occurrence of coincidence but this was apparent only when the

excitation did not decay significantly whilst being convected a distance

~ -6-



equal to a modal wavelength. The disappearance of the wavelength matching

peaks in the joint acceptance terms, to be discussed in Chapter 2, is shown

in work by Bozich (1964) when the excitation decays very rapidly.

The analysis of Lyon was extended to two dimensions by Dyer (1958)

and this investigation, with the work of Powell (1958a,b) has been the basis

of the majority of subsequent investigations. Dyer used the Green's

function technique, which is equivalent to the use of the impulse response

function, to determine the displacement cross correlation function in terms

of the panel normal modes. Initially proposing an exponential form of

excitation cross correlation function (equation (1.1)), Dyer reduced the

spatial terms to delta functions as shown in equation (1.2), before

carrying out the response analysis.

The use of the delta function representation introduces several errors
but Maidanik (1960) has shown that in certain cases of convected turbulence

the errors may be small. The form of the cross correlation function in

equation (1.2) implies that the pressure field is uncorrelated in the x 3
direction but is highly correlated, because of convection, in the x direction.

The uncorrelated lateral component implies that there will be no statistical

coupling of modes (m-n) and (r-s) when n # s, but statistical coupling is

possible in the longitudinal direction. However, Dyer assumed further that

Ucet << L , i.e. that a turbulent eddy decays whilst travelling a distance

which is small relative to the panel length, and the conclusions drawn by

Dyer refer to a system which is effectively uncorrelated in space. Thus

the predicted response does not include the statistical coupling of modes.

The assumption Ucet << L is not valid for the experimental conditions1
discussed by the author in later chapters. A further disadvantage of the

delta function representation is the implication of infinite energy, the

excitation pressure power spectral density having a constant value at all

frequencies. The panel displacement cross correlation function derived

by Dyer was used by Baroudi (1964) and Maestrello (1965b) to indicate the

presence of running waves in experimental panels.

For zero time delay, the results of Dyer give the mean square modal
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response of the panel and under these conditions the effect of "hydrodynamic"

coincidence was studied, in a given mode, when the component of the convection

velocity in the direction of the standing wave on the plate matched the

bending wave velocity.

Following the work of Dyer, the response of a beam to turbulent boundary

layer excitation was studied by Tack and Lambert (1962). The delta function

representation of the excitation cross correlation function shown in

equation (1.2) was used as a basis, and the beam was assumed to have simply-

supported mode shapes. The theoretical results were compared with measure-

ments of the mean square modal response of a beam exposed to the turbulent

boundary layer of an air flow with free stream Mach numbers up to M = 0.3.O

However, in the final analysis the overall correlation area r and the eddy

lifetime t in equation (1.2) were replaced by empirical frequency dependent

parameters. The measured and predicted mean square displacements of the

beam showed good agreement but the use of the empirical parameters makes it

difficult to assess the reliability of the method. Measurements by

Tack and Lambert suggested that, in the wind tunnel used for the experiments,

the boundary layer convection velocity was almost equal to the free stream

v •ocity, and the latter value was used in place of the convection velocity.

This result differs from other investigations, where the convection

velocities were 70% to 80% of the free stream values.

When estimating the radiation sound field of a rectangular panel

excited by a turbulent boundary layer, Davies (1964) assumes the excitation

correlation function shown in equation (1.1). However, for simplification

in the analysis Davies introduces assumptions which effectively reduce the

representation to the delta function form of equation (1.2). In a further

assumption, that the turbulence lifetime is very short, the convected

pressure field is effectively replaced by a non-convected field, and the

final panel v-7bration results apply only to a very restricted form of

excitation. The analysis of the structural vibrations is a combination

of the work of Povell (1958a) and Dyer (1958) since both the Crequency

domain (joint and cross acceptances) and the time domain (Fourier transforms

of the acceptances) are used. The choice of domain can depend on whether
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the available information for the boundary layer turbulence is in the form

of a spectral density function or a correlation function. Also, if

numerical integration is uqed, the choice of function may be determined by

the associated rate of decrease of the function with frequency or time.

The method of analysis of Kraichnan (1957) differs from that of other

authors because of the use of the complete Fourier transform in the wave

number-frequency domain, other investigators having used the partial

transform in the space-frequency domain. However, the work of Kraichnan

is similar to that of Powell and Dyer, the semi-infinite plane under the

boundary layer being subdivided into a series of independently vibrating

square panels with simply supported boundaries. The boundary layer pressure

field was assumed to have a rigidly convected pattern and Kraichnan assumed

an idealised wave number-frequency spectrum for the pressure fluctuations.

The form of the spectrum was based on purely theoretical reasoning and does

not provide a reasonable representation of later measurements. As the use

of the assumed spectrum shape is implicit in subsequent analysis, the

results are difficult to modify for alternative excitation functions.

1.2.3 Experimental Investigations

Experimental investigations of the response of simple structures to

turbulent boundary layer excitation have been carried out by several authors

but little attempt has been made to compare the measured response with

theoretical estimates. The work has been confined primarily to controlied

laboratory experiments with air or water as the excitation fluid, and there

is a very limited amount of data published for in-flight aeasurements.

Initially the experimental structures were simple panels of square or

rectangular planform but recent investigations by Madstrello (1965) and

McNulty (see Richards, Vilby and McNulty (1965)) have included panel arrays

wherea the individual panels are separated by stringers. The vibration of

the panels has been measured in the form of accelerations, strains, or dis-

placements, thelatter method having the advantage that the measuring probes

could be of the non-contacting type and could be traversed over the panel

surface.
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Response spectra for single panels have been measured in subsonic

wind tunnels by Baroudi (1964) and Maestrello (1965a,b,c) and in a water

tunnel by Stevenson, Saltus and Taggart (1961). Baroudi used clamped

panels which were 11 inches square and had thicknesses in the range of

0.0015 inch to 0.008 inch. These were exposed to airflow velocities of

up to 190 ft/sec. Maestrello measured the response of 12" x 7" and

36" x 6.5" panels with thicknesses in the range of 0.02 inch to 0.08 inch,

and airspeeds of up to 700 ft/sec. The airflow in the experiments conducted

by Baroudi was fully developed pipe flow, and in the work of Maestrello the

flow had a boundary layer with a displacement thickness of 6* where 0.155 inch

< 6* < 0.180 inch. In both investigations the measurements were influenced

by background noise in the wind tunnel and, as in the present investigation,

low frequency results had to be rejected. This limitation has a negligible

effect on the results presented by Maestrello (1965a) and by the present

author because the experimental panels were designed to have the lowest

natural frequencies above the interference r&nge. However, the panels

used by Baroudi were very flexible so that a measurable response could be
Sobtained at the low flow velocities. The lower natural frequencies of the

panels were within the interference bund, and rejection of the low frequency

results implied a rejection of useful information. A further disadvantage

of the very thin panels used by Baroudi was the presence of the "oil-can"

effect and the panels were exposed to a slight static pressure differential

to overcome the phenomenon. In addition to the above laboratory experiments,

the vibration of an 8" x 6" x 0.018" experimental panel was measured in

flight at Mach numbers up to M = 1.6, by Webb, Keeler and Allen (1962), but

it is difficult to interpret the results.

The spectral data in the four investigations is limited in scope and

only Baroudi (1964) made a comparison between the measurements and the

theoretical predictions. The response was calculated by use of the idealised

delta function representation of the bnundary layer pressure field propo'ed

by Dyer (1958) and there was little agreement between experiment and theory.

Spectral measurements by Maestrello (1965b) showed the presence of modes of

unit order only in the lateral direction. This restriction is net observed
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in the results presented by the author, modes of higher order being

present in the measured and predicted spectra.

The mean square displacement of the panels has been measured by

Maestrello (1965c) and he showed that there was a relationship between

the displacement and the free stream velocity which varied from U2 . 0 to0

. Maestrello compared this dependency with a similar one for the
0

radiated acoustic power, the relationship varying from U2 . 3 to U8 "0

0 0
Similar measurements by Ludwig (196W) using the same equipment as that used

by Baroudi, showed the acoustic power to be proportional to U5  for the
6 8 0

thinner panels and U6 to U8 for the thickest panels. With the wide0 0

divergence of these results it becomes obvious that neither the mean square

panel displacement, nor the radiated acoustic power, can be represented by

the velocity term alone.

Using displacemert cross-correlation techniques, Maestrello (1965b,c)

and Baroudi (1964) investigated the occurrence of running flexural waves in

the panels, and they were able to relate the measurements to theoretical

predictions usin6 the method of Dyer (1958). Maestrello showed that the

waves occurred primarily in the thinner panels and at the higher flow speeds,

and suggested that the change from standing waves to running waves was

* responsible for the change in the acoustic radiation laws. The change from

standing to running waves could alter the radiation efficiency of the panels

but this is responsible, probably, for only part of the change in the

radiation laws. An alternative solution to that proposed by Maestrello

(or more probably, the complete solution is a combination of the various

suggettions) is given by the joint acceptance curves shown in Chapter 2. On

this basis the mean square displacement law, which Maestrello associates

Swith the acoustic radiation power law, changes when the condition of coincidence

is reached for the dominant modes. When the flow velocity increases from a

value below that for coincidence, the joint acceptance for a given mode

incre.ises, but further velocity increases above coincidence result in de-

creases in the joint acceptance. The coincident state may be associated

with running waves but this is not necessarily true for all modes.
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The existence of the running waves will depend upon the lifetime of

the pressure fluctuations and on the damping present in the structure.

When the lifetime is short relative to the time for convection over the

panel surface, or when the damping in the structure is high, the waves in

the panel will suffer negligible reflection at the panel boundaries. In

such circumstances it will be difficult to set up a standing wave system

and the vibration of the structure will be composed essentially of running

waves. The condition of coincidence will occur independently of whether

the vibratio;. is composed of standing waves or of running waves. Coincidence

will arise when there is wavelength and frequency matching between the

excitation and the structure, and is of importance when it occurs in the

neighbourhood of a panel natural frequency.

Running waves have been observed by Bies (1965) in a circular panel

excited by the turbulent boundary layer in supersonic flow up to a Mach

number M° = 3.5. The panel was designed to have a high degree of damping

so that wave reflection at the boundaries was a minimum, and was .ubjected

to a small tension to maintain a flat surface and to prevent the "oil-can"

effect. The analysis of the panel vibration was carried out in octave

frequency bands in a frequency range of high modal density and qualitative,

but not quantitative, agreement was claimed between the measured and

predicted results.

1.3 Extension of Previous Work.

1.3.1 Requirements

In the review of previous theoretical investigations of the response of

structures to random excitation it was seen that the work was restricted to

simple structures and to simple representitions of the excitation field. In
particular there was a negligible amount of work in which realistic
representations of the statistical characteristics of a turbulent boundary

layer verx used. This omission was the result partly of the absence of

detailed information when the investigations were carried out, and partly

as a result of the desire to reduce the complexity of the theoretical

analysis. As a more detailed knowledge of the excitation field in a
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boundary layer is now available, the theoretical studies can be extended

using analytical forms of the pressure field which are more realistic

representations of the physical phenomenon. The effect of aerodynamic

parameters such as flow velocity, boundary layer thickness and pressure

gradient, in addition to the effects of the structural parameters, can be

investigated theoretically.

The review has shown also that, apart from the two contemporary

investigations which were reported during the period covered by the current

+ work, there were virtually no measurements of the response of structures

excited by turbulent boundary layers. Thus there was a requirement for

I experimental data which could be used t~o test the reliability of the

theoretical predictions. The comparison between theory and experiment

was needed for two reasons: firstly to investigate the variation of the

structural response with the aerodynamic and structural parameters, and
S~secondly to compare the absolute magnitudes of the predicted and measured

response. However, due to the random nature of the systems, it was not

expected that close numerical agreement could be achieved. The work

published since the start of this investigation has helped to provide a

basis for comparison between theoretical and experimental results in certain

cases but further work is required.

1.3.2 Present Investigation

A specially designed boundary layer wind tunnel with low noise and

vibration characteristics has been built at the University of Southampton,

and this tunnel was used to provide the turbulent boundary layer excitation

for the experimental investigation.

The wall pressure field in the wind tunnel has been studied in detail

by Bull (1963) for a zero pressure gradient, and this information can be

used in the prediction of the response of structures placed in tbh wall of

the tunnel working section. Thus a comparison can be made between measured

and predicted results. The design of the tunnel, with flow control being

achieved using single position liners, limits the variation of tunnel speed

and the present construction permits only two operating conditions. However

the subsonic working section is sufficiently long to allow a range of boundary

-13-
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layer thicknesses to be used. The method of construction of the panels

permitted measurements to be made of the effect of flow direction. The

effects of pressure gradient and supersonic flow are not discussed but a

limited range of flow parameters is available for a comparison to be made

between measured and estimated vibration levels.

For structural simplicity the experimental specimens were constructed

in the form of single square or rectangular panels, with the intention that

the programme could be extended to more complex panel-stringer combinations

in subsequent investigations. The single panels are not representative of

many practical structures but their use as experimental structures is

essential at the beginning of an investigation of this nature, so that the

number of possible variables is not too large. A series of experimental

panels was used in order that the effects of panel dimensions, aspect ratio

and natural frequency could be observed.

The design of the wind tunnel is such that the static pressure in the

tunnel working section is below ambient and under normal running conditions

there is a static pressure differential across the walls of the tunnel.

The pressure differential is experienced also by the experimental panels and

a pressure equalising system had to be constructed to eliminate the differ-

ential. This aused additional complications in the panel vibration

measurements but there was partial compensation because the effect of a

static pressure differential on the panel vibration could be measured.

In addition to the boundary layer wind tunnel, experimental equipment

available at the University of Southampton enabled comparative response

measurements to be made when specimens were exposed to grazing inciden'e

acoustic waves in a siren tunnel, or to acoustic waves with non-zero

angles of incidence in the near or far field of a cold air jet. Air jet

excitation was used in early measurements using thin panels and the panel

vibration results were similar to those obtained in the siren tunnel, as

shown by Wilby (1963) and Bull, Wilby and Blackman (1963). The measure-

ments are not presented here because the panels were accidentally destroyed

before the investigation was completed, and later measurements were confined
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to the siren and boundary layer tunnels.

The main investigation carried out by the author was supplemented by

subsidiary investigations which arose from the limitations of the available

equipment. One such problem was associated with the requirement for

analysing filtdrs with very narrow bandwidths. The filters available had

bandwidths which were comparable to, or greater than, the bandwidths of

the peaks in the panel response spectra. A method is presented for the

estimation of the spectral resolution loss due to the finite bandwidth of

the filters but the filter bandwidths were too wide to permit reasonable

estimation of the panel damping in the presence of an airflow. Alternative

methods using random techniques were employed with only limited success

and the application of these techniques is discussed in Chapter 4.

The basic aims of the investigation can now be stated. They were

primarily the measurement of the vibration of structures exposed to

turbulent boundary layers in flows with zero pressure gradient, studying

the variation of response with boundary layer thickness, flow velocity,

panel orientation relative to flow direction, and static pressure

differential. The experimental panels were to be exposed to alternative

forms of convected, random excitation. The experimental programme was

to be carried out in association with a theoretical investigation using a

realistic representation of the pressure field so that the measured and

predicted response variation with the aerodynamic parameters could be

compared. The comparison would also indicate the accuracy with which the

magnitude of the response could be predicted. Subsidiary investigations

into the effect of filter bandwidth on the spectrum resolution of the

measurements, and into the effect of flow velocity on the panel damping,

would be necessary for the completion of the main programme. The

programme, although restricted to simple panels, provides experimental
and theoretical data on the effect of several parameters which have not

been studied previously, only flow velocity having been varied in other

investigations.

The form of the experimental panels wva chosen for several reasons.
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As has been stated previously, it was desirable that the number of structural

parameters should be restricted so that the theoretical and experimental

analysis would not become too complicated initially. The size and shape of

the panels was determined from practical considerations which are discussed

in section 3.3. Because of these restrictions the direct application of

the results will be limited but it was decided that this was preferable until

the reliability of the experimental and theoretical method was established.

The work could then be extended, as is being done now by McNulty (see Richards,

Wilby and McNulty (1965)) to more complicated panel arrays which resemble

practical structures more closely.

The results of the investigation will be of direct use in the estimation

of the level of boundary layer induced vibration at different positions on

the structure of a moving body. The estimation of the response is required

in the prediction of fatigue damage but it will provide also an indication

of the variation of acoustic radiation with the aerodynamic parameters

investigated. Detailed analysis of the noise radiation problem cannot be

completed, however, until measurements have been made of the panel displace-

ment cross-correlation function. Application of the results will be

restricted in the first instance to structures which vibrate as a series of

independent panels, but this may be extended following further investigations

into the vibration of multi-panel arrays.

1.4 SummaEX

The survey of the published theoretical studies of the response of

simple structures to random excitation has shown that the basic modal approach,

following Powell (1958a) or Dyer (1958), for finite structures is well

established but that there has been little attempt to use a realistic

representation of the statistical properties of a turbulent boundary layer

in the estimation of the response of structures to boundary layer excitation.

In many cases the investigations were not intended to include boundary layer

excitation and in others, due to the lack of alternative information or to

the need for simplification, only simplified representations of the boundary

layer pressure field were used. From available data it is possible now to
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use realistic representations of the boundary layer pressure field and

to calculate the associated panel response. Thus a theoretical study

of the effect of aerodynamic and structural parameters can be carried out

in the present investigation.

With the exception of two investigations reported during the period

covered by the present work, there is a negligible amount of experimental

data which refers to the vibration of boundary layer excited structures.

Even when the recently published results are considered, the effect of

several parameters is excluded and there is no systematic comparison between

theoretical and experimental results. Thus the combined experimental and

theoretical programme which has been outlined in the preceding section and

which is described in detail in the succeeding chapters, covers aspects

of the problem which are not contained in earlier or contemporary

investigations.

K
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CHAPTER 2

Theoretical Response to Boundary Layer Excitation

2.1 Introduction

In the review of other theoretical investigations in Chapter 1, it

was seen that the normal mode method was used for all work on finite

structures, and that the wave approach was used for infinite structures,

In the present analysis it is assumed that the excitation pressure

pattern is correlated, in a moving frame of reference, over distances

which are of the same order of magnitude as the panel dimensions. This

assumption is justified by the experimental results of Bull (1963). Thus

the normal mode approach will be used in the prediction of panel response

to boundary layer and acoustic excitation. The displacement power

spectral density function will be derived from the impulse response

function, a method similar to that of Dyer (1958), but the resulting

equation for the spectral density function will be directly comparable

to the result of' Powell (1958a).

It will be assumed initially that the panel is a flat plate in bending,

and that there is negligible interaction between the panel and the excitation

field. The vibration will be assumed to be adequately represented by a

series of normal modes, with no modal coupling due to damping. At a later

stage of the analysis, further assumptions will be introduced regarding

separability in the co-ordinate directions and the form of the mode shapes.

For ease of computation simply supported mode shapes will be used, but

other forms can be used if necessary.

2.2 General Theory

The displacement w(x,t) of a vibrating plate is assumed to obey the

thin-plate equation

WV + Ci + D4w= p(x,t) (2.1)
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where M is the mass per unit area, C the damping, D the flexural rigidity

and p(x,t) the exciting force. The solution to equation (2.1) can be

expressed in terms of a linear sum of the normal modes

w(x,t) = . q (t) 'p(x) . . . (2.2)
Sea=l

th
where q (t) is the generalised co-ordinate for the a mode, and 'a(x)

is the mode shape function. In practice the infinite sum can be reduced,
for a sufficient degree of accuracy, to a summation over a finite range of a.

thFrom Lagrange's equation, the motion in the a mode is given by the

equation

Ma(t) + C (t) + K q (t) = L (t) • • • (2.3)

where M, , K and L are, respectively, the generalised mass, damping,a a a a tstiffness and external force in the a mode, and, in particular, M and L
a a

are defined by

M =fii(x) 'p2(x) dx

A

a A .~ . .(2)

where u(x) is the panel surface density and where the notation fA dz is an
abbreviated form of the double integral flk3 dxldx 3 over the structural

area A. The frame of reference is the three-dimensional rectangular

Cartesian system (x 1,X2 ,X3 ) and the undisturbed panel neutral plane is

assumed to lie in the (x 1 ,x 3 ) plane. The natural frequency of the mode

is defined to bew a*a/Md)

th
The equation of motion in the a mode can be written in the form of

equation (2.3) only if it is assumed that the modal coupling due to

damping effects is negligible.
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The form of equation (2.3) implies that the damping in that mode isCa
of the viscous type, the damping coefficient being 6. =

Simila- Lagrange equations can be obtairned for hysteretic damping when

the concept of a complex stiffness K((l + iv ) is used. The equation of

motion is

M S (t) + Ka(l + iv ) q (t) L (t) • • • (2.5)

Strictly, the solutions of equation (2.5) are restricted to be complex

exponential in form, and hysteretic damping has to be used carefully when the

loading is random. The problems associated with the use of hysteretic damping

for random vibration are discussed in Chapter 4, and it is suggested that

equation (2.5) be written in the form

Kv
M 4 (t) + 0--- C(t) + K q4(t) = La(t) . . . (2.6)

which is valid for harmonic solutions. Equation (2.6) can now be written

in the equivalent vi-cous form

M 4 (t) + C e (t) + K q(t) L (t) (2.7)

K
where C - - represents an "effective" vi-onus damper. Solutions of

equation (2.7) can be obtained for viscous dampia,, wd tysteretic damping

then reintroduced. Thus the theoretical aneiysis of random vibration will

assume initially that the damping is viscous.

The solution of equation (2.3) car, be obtained in terms on tVa "impulse

response function" h (T)

q (t) f L,(r)h (t -
- . .

f" L (t -~ vd

where h(T) 0 0 for T < 0.
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Substituting equations (2.4) and (2.8) in equation (2.2)

w(x,t) I •p_ (x)f f * (X')p(xh,t-T )ha(T )dx'dTl . . . (2.9)
'i• - a -• A -

The response autocorrelation function is, by definition,

' +T
Rd(T) Lim F f w(x,t)w(x,t+T)dt . . . (2.10)

-T

and from equation (2.9)

Rd(r) = ( (x) f f (x') '(x") fo f* h(- 1 )h (T2 )Sa 6 A A -0- - 0 0-

T

x Lim-f p(_,,t-T)p(X-,t+T-T2)dt dTIdT2q' x"
-T• T_

ii (2.11)

where it is assumed that the appropriate integrals are uniformly convergent

so that the change in the order of integration is valid.

Nowv che excitation cross-correlation P•nction is
i Rp~xx,• • +T

R )' " ")= Lim -TT- p(xt)p(A,7÷t)dt . . . (2.12)~T• T

Therefore, from eqv-atics (?,.i) and (2.12) 1
R 1)W(x ) f f (,* (x"f Ui( h (

A A"

x Rp (x,'X",r+y -1 )di dt dxldx" . ( • (2.13)
p 2 1 2

The -esponse power spectral density function SB(h) can be obtained
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from equation (2.13) by the Wiener-Khinchin relations.

SR,('r) = f" Sd(w)elwTd• 2~

1 -LWT

Sd(w) 1

I Thus the displacement power spectral density function is, from

equations (2.13) and f (2.14),

dw C

SSd(w) = i X p(x) '8~(x) ff ip*(x') ip8 (x"') (TS ha )h (r2

+ 8AA .... ~

:X - R(x'_ ,_x",T+ 1-2)e- dT~dTd 2 dx'dx''

,+ ~= s 8X p(_x),'8(x• H *(•)Hs(•) fA A j" _ (x')tp8(x")Sp(X',X",w)dx'dx"

00A

(2.15)

wW) =L fR (x',x",r)e~ T dT is the excitation cross-power

p 27r p d.

T spectral density function and H (w) is the complex response function or

S~receptance, which is related to the impulse response function by the

S~Fourier transform pair

h (()2= 11 SH (()ei. d)

H()(x) (- f f h (r)e-)h(

H (•) is also the reciprocal of the complex impedanc. Y (w). The complex

Id a2

conjugate of H (() is denoted by H *(w).

aA A

Froe the definitions in equations (2.10) and (2.11,), it can be shown

.22-
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that the cross-power spectral density function has the property

S(x' x",W) = S*(x' x",-W)

= S*(X",x' ,) • • • (2.17)

where the asterisk again denotes a complex conjugate.

Writing S(x',x",w) = C(x;,x_",w)-iQ(x',x",w) . . . (2.18)

where C(x' x",w) and Q(x',x",w) are functions of w with real coefficients,

then, from equation (2.17)

C(x' ,x",W) = C(x' ,x",-W) = C(x",x' ,W)
. . . (2.19)

__xl~xw, = -Q(x,-, = -Q(x_",x',)

Equation (2.15) can be used as a basis for the calculation of the

response of a structure subjected to a spatially distributed rando-

excitation, and is similar to the response spectral density equation

derived by Powell (1958a).

"Joint acceptance" JM(w) and "cross acceptance" J (w) terms can

be defined by

Ja(w) = Az~pkLW. ff •_(x') _(x") S (x',x",w)dx' dx"

.. (2.20)
and J a(w) -As f f %,•(x')14(x") S (x',x",w)dx' dx"AA

t p A A j

where S (M) is the excitation power spectral density function.
p

2.3 Displacement Power Spectral Density Function

, ~ 2.3.1 Elimir.ation of Imaginary Term

The form of the displacement power spectral density function in

equation (2.15) can be investigated further without too great a loss of

-23-
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generality.

Consider the double integral term in equation (2.15)

S( 2 S(W) J2 (W)

= f f _(_A,)*_(x") S (_,x",W) dx, dx"SAA f A

= fA f *(x")-- (x')-- S (x",x',W) dx" dx' on interchanging
A A xI and x"

= f * a_(x")* (x') S p (x_',x",w) dx, dx" . . . (2.21)
AA

when the order of integration is changed and the properties of

equation (2.17) are used. For the case a = 8 equation (2.21) gives

Iaa(w) = f f Vi(x') (x.") S (x',x",w) dx' dx"
AA

= f I ,''(_,), (W) S *(•,"x") dx_ dx"
AA

and, equating the imaginary parts

fI ' (x_')* (x") %(x'_,_x",w) dx' " = 0 .0 (2.22)
AA

Further, for reasons similar to the above,

HA*() Ha(w) Ia(aw) + H(w) H *(W) I + (W)

M I f A *(x_')*o(x."){H *(W)H Ms p (xI',x",W) + H a(w)H *(W)S p (XI,X_",W)}dx_ dx."

AAa 2f f *Q(x'I)* (x") Re IHa =). s p(x',_x",W)I dq' dx" a a()S(_ _(2.23)

where the symbol 'Re' denotes "real part of".
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If the complex impedance product Y a (w) Y (w) is denoted by

a
l i 8  ~ ) (2.21*)

then from equations (2.18) and (2.24)

e H( ( p ,,g C (x''x"•w) + h (x'Ix",')

Re (H *(w)fl (WS (x'exw)) = 8p a8
a p - MM(g 2 + h 2)

a8 a8 do
• . . (2.25)

Combining equations (2.15), (2.18), (2.22), (2.23) and (2.25), the

displacement power spectral density function becomes

Sdw)= ~ 2(X)u(,)IH _x),(" (x1 x",tw) dx' dx"s(W) = I * -
a AA

g C (x,,x",w) + h QP(_•', )
+ 2. • 4_(x)*( f(- a8 - ga~ * hafQ*()Z (x) dx' dx-

a8 A A MML a hdx

1 .(2.26)

where the pair (a,$) is counted only once.

The right-hand side of equation (2.26) is real, which is to be expected

because from physical arguments Sd(w) is real.

2.3.2 Forms Separable in x Coordinates

In many cases it is possible to express the mode shape OWx) in an exact

or approximate form which is separable in the (x ,x) directions.
1

Let *(x) = *(x ),n(x ),n

(2.2T)
and OW(x) = *(lx ),(x) r,s =l,2,...

where the suffices m,n,r,s denote the number of modal half-wavelengths

in the xk directions. When expressed in the form of equation (2.2T) the

-25-
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mode forms have the property that for a uniform rectangular structure

bounded by 0 < xk Lk

=(xk) M (-)J+l *i(Lk-xk) • • . (2.28)

Assume now that the excitation cross power spectral density function
can be expressed also in a form which is separable in the co-ordinate

directions

S p(x',x",w) Sp (xP3 (x ',x 3"W)

where S PI (x 1,x ",W) = C (x 1,x ",W) - iQ%(x',x",w) (2.29)

and SP3 (x 3',x3",W) = CP3(x 3',x3",w) - iQP3(x3,x3" S)

S (x 1,x ",w) and S (x ',x 3",W) will satisfy conditions similar to

those of equation (2.1T). Comparing equations (2.18) and (2.29)

C (_ 'x." •w) - C (x ,,x ",W)C P 3 (x ,,• ,)%3(x3, , ".,)

and

Q(x',x"'w) - CP (x ,.xI",W)%3(x3",ii) + Cp3(x ,,3",w)QP,(x ",,.w)

.. . (2.30)

For a homogeneous and stationary forcing field the power spectral

density function is independent of position x' and is a function only of

the separation x - x_ . Thus the function Sp (X',x"W) can be written

as

'S p(x',x",w) S p(&,W) S p , c3,u)
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and it can then be shown, from equations (2.27), (2.28), (2.29) and

(2.30), that, for a structure with dimensions L, L,

f f *4•(x,)i (x")c (x,_x",w) dx, dx"

-f f *a f
A A

0 0 f 0 0 (x1' Ox3 (x I'x3

{(1 (-i)m+r )(+(-i)n+s)C ( •1,0)C (0,E3,W)
p p

-(-( )m+r) ( _()n+s )%( i,0.'i)Q(0.• 3.w) } dx3 'dx 1 'dx 3 "dx 1"

. . . (2.31)

where C (x',X", w) is now written
p 11

similarly C (x3',x3",w) - C (0

• h0 O• f~xl"O F "O W #ax!'3'e(x&"0x)C(lO)pO'3)d'd'd"d"
and 3. and n's even

L L 3 XI" x3

* 111L f4x'33 ''8(xl13% C 0.)(0F 3'wddx 3'dx1 dX3"dxl

0 0 0 0
when m+r and n+s odd

- 0 when m+r even and n+a odd

or m+r odd and n+s even. • . • (2.32)
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Similarly

If*(X')* (X")%p(x'.x",w) dx' dx"

= L1  L3  " xI-* f 3f 1  X3
0 0 0 0

{ (l+(-.l)m+r) (l-.(-..)n+s)Cp( • ,o,)(o 3,)

+ ( 1 -(- 1)m+r)( 1 +(- 1 )n+s)C P((O,& 3 9w)%(Q°1 ''0'w) dx3'dx1 'dx 3"dxl"

. . . (2.33)

L f L3f x fX( 13  )i( x 3 ) (

*-4 f (x~ ,x) (xt, x3 )c (o.93 .w)%P(c1 .Ow)dx Idx tdx "dx1

L3 3" P 3 1

0 0 0 0

when m+r even and n+s odd

=-4 fh f% fx, f "(xI ,x 3x14 0(x., '3".)C P(OC3,W)Qp(&,,O,wd 3ldxIdx3,dxl•"
0 0 0 0

when m+r odd and n+s even

- 0 when m+r and n+s even

or m+r and n+s odd • . • (2.34)

From equations (2.32) and (2.34) it is seen that at least one double

integral of the pair

f f * (_')* (x")C (x',x",w) dx' dx"
A A B

and f f ,('),,•(x")%(x'.x",w) dx' dx"
A A

must be zero for a given mode pair (*,B). This simplifies the computation

since only one term has to be considered for a particular mode combination.
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Further reduction of the double integral terms depends on the form

of the excitation cross-power spectral density function, or alternatively

on the narrow band cross correlation coefficient p (Q ,E3,T;w).

From Appendix A, it can be shown that

S p(, S) -S (E ,t ,3) - j (&1 ,4 ,W)! e-ibE

= Ipp(• ,,;w)I S S(•W)e-ib~ . . . (2.35)
P1 p

where it is assumed that the pressure field is convected in the positive x,

direction with velocity Uc and where

b =.- . . . (2.36)U
c

Written in this form the right hand side of equation (2.35) appears to be

a time dependent function but, from equation(A.5) it is seen that

S1PpU It3,T;W.)! - P (EItp( 3, ;W)1 . (2.37)

which is independent of T.

From equations (2.18) and (2.35) it is obvious that

C RIOW) -S (W() 1o ( I,3,T;W)j coo b &
p13 p P 1 3

. .(2.38)

as(W) 1P (E I 9r ;Tw)I sin b t
P P13

The assumption in equation (2.29) that

co8p( {l' {•S 6( 0 ,O,w). S p(O,'. ,W)

now implies that a similar representation is true for the narrow band cross-correlation coefficient,

i.e. op l•VC ,T;W)1 " p (I ,o,•r;w). o p(O,', ;3)J .T. . (2.39)

and, from equation (2.35)

8p(• ,It ,) Sp(W) Ip (C ,Or;W)l. op (O,C T;M)1ei
P1.3 P.I p 3
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Comparing equations (2.29) and (2.40)

P(0,•3,•) = 0 . . . (2.41)

Substitution of equation (2.41) into equations (2.32) and (2.34)

reduces the number of possible forms of solution to those equations. When

equation (2.41) is satisfied, functions of jm(W), P'n (W) and kr() can

be defined.

A2
Let f f * (x')* (x")C( ,,)dx',dx" = S (W) i(W) J'ns(W)

A A

L L

where jr(w) -- • f f1 l*C')4r(X ")Ip (•l,O,T:W)j cos b&I dx ' dx"
ur 1 0 0 11 1

4• L x"

= f I f IO (x ')*r(x ")Ip (•l OT;W)l cos b& dx ' dx"
0when m+r even

.0 when m+r odd.

(2.42)

L Land j' (w) =2 L
Ls L 2 n 3 3(')0,(x ")p(O,,;w)l dx ' 3

3 0 0 33 3

L x

L- 3 f03* (x ,)'s(x "lp (o,0,& ;w)I dx dx
n 0 0  3  S p 3 3 33 0 0

when n+s even

* 0 when n+s odd • . (2.-43)

Also let

A A 8(_' t)Q- W ,W)dxd_ A2

ff 3 ) "dx" t S p S(W ) .'ns(w) k ,.(W)

where k (W) 2 f I f 1  (x I)* (x ")Ifp) ,o,;w)1 sin b( dx 4x
1 0 0 11 I

when m+r odd

* 0 when m+r even • . . (2.44)
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Substitution of equations (2.42), (2.43) and (2.44) into equation

S (2.26) yields

A2 2X
Sd(W) = S s(w) (W 2(x) IH(w)I 2  ( j(W)j' nn(W)

ii~ a~ a (m) nn .(.5

A a() (X4 0W J'ns(W) gctoJmr (w) + ha~kmr(w)

2 MM 2 h 2c# 8 a2 + h2

where the pair (C0,) are counted once only,

and where j= (w) = 0 when m+r is odd

J wns(w) = 0 when n+s is odd

kmr(w) * 0 when m+r is even.

2.3.3 Panel Characteristics

Further discussion of the response power spectral density function car

now be restricted to the vibration f single panels. For simplicity in

computation it will be assumed that the panels are simply supported on all

edges. The mode shapes of equation (2.27) can then take the form

*(x )*sin (!!Al1) , *(x )-si, "ILri Lm 1 1
(n,,x, (2.146)

• n(x3) sin (T3) s(X3 )msin (- x-3)
3 3 L3

From equations (2.4) and (2.46), when the surface density M(x) is

assumed to be constant, the generalised mass in the *th mode is

L sin2 (mix, sin2  I 1 3
I 3

. . (2.47)

9L -31-
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A similar generalised mass can be calculated for a fully fixed panel,

using mode shapes of the type given by equation (C.4),normalised to have a

maximum value of unity. A comparison of the results for the (1-1) mode
shows that the generalised mass of a simply supported panel is greater than
that for a fully fixed panel, by a factor of approximately 1.46. The

factor decreases as the mode order increases, and reaches an asymptotic

value of 1.30.

From equation (2.3) the form of the complex receptance H (a) is

I I

1

M" (( W,2• -=) + 2i6o,, w

Alternatively, if the Lagrange equation has the form of equation (2.7),

H (w) can be written in terms of the hysteretic loss factor v
a a

H (+) . . . (2.49)
a a aa

The Wo forms of H (w) in equations (2.48) and (2.49) will give
similar results when 6 and v are small.

a

Assuming the hysteretic form of damping, substitution for Ma from

equation (2-4T) yields

ai(W) Ap (w z w1 ) + Y . . . (2.50)

and, froz equation (2.21)

£ *• (w 2 2 )(w 2 
- w2 ) + V•aVB 2 2'S

(2.51)
ha s v1a2 (W 0 2 -2) -v W 2 (w 2 W2)

aa 8 88



2.3.4 Excitation Field

It has been assumed in equation (2.35) that the excitation has the

form of a fluctuating pressure field which is convected in the positive x1

direction. If the convection velocity is in the direction of x1 decreasing,

j; then equation (2.45) is valid if k (w) is replaced by km'(w) -k (W).

From the results of several experimental investigations of turbulent
boundary layer pressure fluctuations, the excitation narrow band cross
correlation coefficients can be represented approximately by inverse

exponential functions of the form

IP , ro.0T;w) I e-aI . . . (2.52)

where t - x" - x'. This form can be used as an approximate representation

of nther convected pressure fields, for example acoustic plane waves atI grazing or inclined incidence, and jet noise, and permits the integrals in

equations (2.42), (2.43) and (2.44) to be evaluated in closed form. A more

detailed study of the statistical properties of the excitation is contained

in Appendix A.

Based on the experimental results for turbulent boundary layers,

measured by Bull (1963), the x. longitudinal component of the excitation I
narrow band croo- correlation coefficient is assumed to be 4

lii_ •. " " e'a.1411where •l x " x1

1 • • • .(2.53)

The laterul, or x 3, component has the :Assumed for., for reasons given in

Appendix A,
Ip(O't e lor a-> k!

,,) : : 3 Q for iti 3  (2.5)cde 3,' for I <, k •

- -A

where t x -x' nra k sic on wauI
3 3 3 3 isafnto o n l
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2.. Acceptence Terms

2.4.1 Joint Acceptance Terms

"The acceptance terms are of particular importance because they

estimate the degree of coupling between the excitation and the structure,

and they will be studied in detail. It is possible, with the assumed

mode shapes and excitation correlation coefficients, to evaluate the

definite integrals J (W), J' (w) and k (w) in closed form. ConsideringU ns mr
the case a = 8, by analogy with equation (2.20), jmm(w) and j nn(w) can be

called the "longitudinal" and "lateral" joint acceptances respectively.

From the excitation field assumptions of stationarity, homogeneity and a

separable form of Sw(X',x",w) used in the derivation of j M() and j' (0)
- MM nn

and from the condition given by equation (2.41), it can be shown that

Jaa(w) = jmm(W) . j'nn() . . . (2-55)

Substituting equations (2.46), (2,53) and (2.54) into equations (2.42)

and (2.43), it can be shown that

j2w =~f (X (X ")I I(IE1.0, W cos b&, dx1 'dxl"
1 0

= (pi n---l'me- I cos b L +(-)m4e-aL1 sin b mLld A

M)pm

•.. .(2.56)

where A = (1 + (IL1)2 + (Ž-±I)2) 2_4(-4 ,)

Pm a + (1k,)2 -L (~)2 )2 _ a,ý")

mit -4 (.()..('1)

bL + (A I)2_ bL )2

m -MRM
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-3 3

,, -x r' x ") f k(o,. ' dx
nn L n1~ ~ f 3 *p 30 0

Pn(a 3 )e-a3k3 pn(a 4 )de-a' nirk3

=dn(a) d COS L--
nnf T nfl 4 3

-a k ..- a k4
4(a 3 )e 3 3 ý(a )de 4 L - k3+dna3 dnn (a3 4 c 3 3L )nr) sin --Lk3

k d ( a d '( (a.) L "L
nnf 3 nn) 3 3

nn-aaL 2 + a L(1+ + (n")
2(-l1)e 3 3 d 43 n -2)(-8

d (ad '(a)
nnl 3 nfl 4

where p '(a) = a(L3 - k)( 1 + (~aI)2) + 2j

qn(a) = 2 (aL3) +(.ýL_ (L3- !9) nir) fi+ :al)2) ... (2-5)
nir niT L3  nil

d '(a) = (1 + ( 2)2) (1 + (r))

In the special cases when k 3 < 0 or k 3 > L3 , jnn (w) has the simpler forms:-

J n = ( ) ( 1 _ _nna3 + 2 ,/d (a3)) for k 3 L 0 . . . (2.60)

nn(3) nn' a4 3

4 f-rl -d~nn-a) 4 L32 /d(a4) + c(l- (-l)n)} ( . (2.61)
d (a4 'a 4 ) for k 3  L

2.4.2 Cross Acceptance Terms

When 008 , the "cross acceptance" has been defined in equation (2.20)

by

S(w) 4 (•fS• JA(x')*(x")S P(x'x") ow) dx" . . . (2.62)

A'Pw A A B p-d.
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With assumptions again of a stationary and homogeneous excitation,

a separable form of S (X',X",P), and the condition given by equation (2.41),

it can be shown that

J a(w) = Jns(w ) (jmr(w) + i kmr(w)) . . . (2.63)

where j (w), j n(w) and k (w) are given by equations (2.42), (2.43) and
mr ns mr(2.44) respectively. By analogy with the joint acceptances, j(mr() and

kmr(w) can be called the real and imaginary components of the longitudinal

cross acceptance, and ins(w) is the real component of the lateral cross

acceptance (the imaginary component being zero as a result of equation (2.41)).

From equations (2.42), (2.46) and (2.53) it can be shown that, for the

assumed excitation correlation form,

M( I Pmr (I - - e cos bL1) + (-l)m2 (qmr + qm)e-a' sin bL1l
m r

for m+r even

.0 for m+r odd
. . . (2.64)

and, from equations (2.44), (2.46) and (2.53)

4___ a.m -aL1- (-l)m2(qr + qm)e- cos bLU + (-i) e- sin bL1
mr

2mr+ (d + d)}
m-r mr rm

for m+r odd

- 0 for m+r even
. . . (2.65)
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I
where / is giver by equation. (2.57)

r + (1_)2 - 2) (1 + 2 1 )(i)
urn (1)) rir rir urW ryr uW rir

qr b ) ( + ( )2 - (•I)2)

d = (r) A aL)bL
Mru m r mu MIT

. . (2.66)

The lateral cross acceptance component j' (W) is, from equatiors (2.43),

(2.46) and (2.54)

. = , cos n rk3 + s O + s sinn sin Lk)
ins (w) =ns- 1 { Pns L---- psn L S L3 sn L3

d (-l)ne-a3 L3 •~

+ (c + dnnsa - s(a) for n+s even

=0 for n+s odd ... (2.67)

wher P~s s2 fde -a 4k3 e'-as3k3s +where Pns = (n-5i) t n~g - dnna3 + c)

~~ (n3L3)e ask s
n=s d(l ' T- d anna4 nn( 3

. .. (2.68)
and d2(a) is given by equation (2.59).

In the special cases when 1(3 < 0 or k(3 > L3, jns(w) has the simpler
form, for nn_ even

j, (s) * (l--neasL) fork O .k I(2.69)
ns "t dna 3d 3(-

A nn-- •L nn (

"and d n÷-(-a)n)i for k3b eqL 3  • (2.70)

3~~ . 31i
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2.5 Sinlification for Acoustic Excitation

When the excitation is in the form of progressive acoustic plane

waves, it is possible to simplify the forms of the acceptance terms.

Assume that the acoustic waves are propagated in a direction such that

the plane wave fronts make an angle * with the plane of the panel, and

the direction of propagation of the trace wave over the panel is parallel

to the x direction. The trace velocity will be Uc -0 , where C is
1 c sin~ 0 o

the speed of sound. The excitation differs from the boundary layer

pressure field for several reasons; the convection velocity U is indepen-
c

dent of frequency, and the correlation coefficient is an undamped cosine

in the longitudinal direction and unity in the lateral direction (i.e. along

a wave front). Thus equations (2.53) and (2.54) reduce to

iP p (El0,T;W)l:i = Ip. (,0&,3T;W)I . . . (2.71)

The joint acceptance terms can be modified by substituting a = 0 in

equation (2.56) and a3 = 0 in equation (2.60).

From equations (2.56) and (2.57), when a = 0, the longitudinal joint

acceptance is

4(1 - (- 1 )m cos b LI)bL
j (W2a)) (L)2 for Mill 1 . . . (2.72)• n2 12(1.- (•-2 i'

The solution given by equation (2.72) is not valid when ( 1) ,

and j M(m) must be calculated directly from the definition of j (MM) in

equation (2.42).

Then j (w) = j for =, . . . (2.73)

Similarly, when a3 a 0, the lateral joint acceptance is, from

equation (2.60)

nwJ U-3 8 .
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The cross acceptance terms can be reduced also. Putting a 0 I
in equation (2.64), or from the definition of jmr in equation (2.42),

4 I(l (-l)m cos b L1) b~L

mr) 2 1 (i U for m+r even, iSL1b1mri 2 1 (72) 1- ¢ ) 2)
mir rirbLI!: ~~and bL 1

a rn - . . (2.75)

for m+r even and bL1 or =1 I
m71 rir

= 0 for m+r odd.

From equation (2.65), with a = 0, or from the definition of k (w) in

equation (2.44),

4 (-1)" sin b Li fL

( mrW2 (1 - (2b±l)2)(l - (.•LI)2) for m+r odd, W 1

and

2r for m+r odd, b-Li 1

2m for m+r odd, b . (2.76)

* 0 for m+r even

Finally, from equation (2.69) with a3 0 0, or from the definition of

O, s(w) in equation (2.43)

j,(h.) * 2(1 - (-1)11)2 for n+, even
for nswv

(2.71)
- 0 for n+s odd
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j 2.6 Evaluation of Joint Acceptance Terms

p 2.6.1 Non-Dimensional Parameters

Computation of the joint and cross terms in equation (2.45) shows
th Bth

that in general, when the a and a modes have well separated natural

frequencies and the damping is light, the cross terms are small relative

to the joint terms. Therefore it is of interest to study the effects of

the excitation parameters on the joint acceptance terms as these will be

of primary importance in the finally computed response spectra. From

the boundary layer excitation correlation coefficients in Appendix A,

the joint acceptance terms will depend on three parameters, boundary

layer displacement thickness 6*, pressure field convection velocity U c(W)

and angular frequency w. The parameters U (w) and w can be usefully

combined in terms of a frequency dependent narrow band excitation correlation

length c(w). There are several ways of defining a typical correlation

length, but the most appropriate one in this context is given by the

separation distance to the first zero of the real part of Sp (x',x",W) in

equation (2.35). Thus, from equations (2.35) and (2.36), C(w) is defined

by

Cos - 0 . . . (2.78)

i.e. C 2 ,r A . . . (2.79)
AI

Alternatively, c - . . . (2.80)

where A is the excitation wavelength at frequency f defined by U c rA.

Son-dimensional parameters - and can now be defined in terms of

a typioal panel length L, and

L O 2,- . (2.81)
C Vuc Uc

When the longitudinal or lateral joint acceptances are considered

separately the typical Length vii be LI or L3 respectively. When the full
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panel is considered, LI is used as the typical structural length and the

panel aspect ratio LE is introduced as a third non-dimensional parameter.

From equation (2.81) the parameter Z can be considered as a non-dimensional

length or frequency as required.

2.6.2 Longitudinal Joint Acceptance

Two forms of the longitudinal narrow band cross correlation coefficient

are proposed in Appendix A for boundary layer excitation, but they both have

the same general form

OP(&l.O.•;,)= 1P (E.O.T;w) cos (,b-t) . . . (2.82)

where b = and JP (tiOT;w)I= eai1
TV p

The two alternative forms of correlation coefficient apply to two

ranges of the Strouhal number w .

Uc

Wuhen kI , then a =a = 0 . (2.83)U U"
c C

and-when -< k, then a a 2  .0 -- (2.84)

c
where a,, agare constant coefficients.

Considering the upper Strouhal number range, the longitudinal joint

acceptances can be calculated for the particular values associated with the

boundary layer wind tunnel used in the experimental investigation,

i.e. *I a 0.1 and Uc(w) is determined by equation (A.16). The limiting
Strouhal number is given by k, a 0.37. With the assumption of simply
supported mode shapes, equation (2.46), the longitudinal joint acceptance

Wim(w) of equation (2.56) is shown in Figure 2.1 in term of the uoa-
dimensional parameter !--1for modes of order a a 1 to T. The results are
similar to those of Bozich (1964). The joint acceptance curve for each
mode has a principal maximum, with the exception of m a 1, at -f , the
approximation being most accurate for the higher order modes. This mximum

-1.1-
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arises from the convective nature of the excitation field, and the

condition = 2m implies that there is a matching between the excitation
2Icorrelation length 4 and the modal wavelength A = L. In terms ofm m

the excitation wavelength X the condition becomes X = A. A similar

result was obtained by Mercer (1965) for the response of the first order

stringer torsional mode of a nine-bay beam. This mode, which can be

compared with the mode m = 9 for a simply supported single panel, showed

a peak joint acceptance location close to 2m.

Inspection of the curves in Figure 2.1 shows that, as m decreases,

the location of the peaks for the low order modes progressively deviates

from the condition l = 2m. This effect is due to the finite size of

the structure and is best exemplified by the limiting case of the fundamental

mode m = 1 where the peak occurs at LI= 0. There will be maximum response

in this mode when there is uniform excitation over the •'ructure and, in

terms of a convected pressure field, this is satisfied when 4 -. This

condition will give peaks in all modes of odd order, and zero joint

acceptances for the even order modes. The longitudinal joint acceptance

is very similar, then, to the generalised force for deterministic loading

of a beam.

The curves in Figure 2.1 contain secondary maxima and minima at

values of <2m, determined by subsidiary matching and mismatching of the

modal wavelength and excitation correlation length. There is also slight

1evidence of maxima vien l > 2m, the acceptance curves shoving slight

ripples*.

The shape of the curves indicates that, when the excitation correlation

length is varied by a change in frequency or convection velocity, no general

statement can be made about the resultant variation in the longitudinal
joint acceptance j (w). In particular, when is in the neighbourbood

of wavelength matching, and < 2m, an increase in w or a decrease in U
will increase the longitudinal joint acceptance, but the same changes in w

or Uc when C > 2m vill decrease the value of j= (w). The influence of the

longitudinal joint acceptance on the panel response power spectral density
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function can be determined from equation (2.45) but in general terms the

response of mode c is a function of the product

IH (w ) 12 j m • n ( ),

This product shows the well known resonance maximum given by

IH (W)12 when w = w but, from Figure 2.1, there will be further maxima

in the modal response curve, particularly when there is wavelength matching

at 2m, that is when w = -U When conditions are such that

W Q there will be appreciable augmentation of the resonance peak.a L,

The matching in both the wavelength and frequency domains can be called

"coincidence" by analogy with the coincidence effect in infinite panels

excited by acoustic waves, and is of most importance when it occurs at a

natural frequency.

The joint acceptance curves in Figure 2.1 were drawn for the

particular value a, = 0.1 associated with the wind tunnel measurements of

Bull (1963). Other investigations of t he boundary layer pressure

fluctuations in a zero pressure gradient have shown slightly different

values of a,, so thr.t the influence of c on the longitudinal joint

acceptance should be studied. Furthermore, recently published measurements

by Schloemer (1966) in non-zero pressure gradients have shown that the decay

rate of the narrow band longitudinal cross correlation coefficient depends

on pressure gradient, the coefficient decaying more slowly in a favourable

pressure gradient. The variation in al shown by Schloemer is of the order

of + 35% about the zero gradient value.

The effect of *I on the longitud-'al joint acceptance is shown in

Figures 2.2 to 2.5 for modes of order m a 1 to 4 respectively. The limiting

case , *I a U, of zero spatial decay of the excitation longitudinal cross

correlation coefficient represents the condition for plane wave acoustic

excitation. When a, a 0 the acceptance curves show a series o4 well

defined maxima and ainims, the minimsa having zero value because there is

a complete miawatch between the excitation narrow band waveform and the

panel modal shapes. This complete cancellation occurs because the sassued
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mode shape and the excitation correlation function have simple sinusoidal

forms. When other mode shapes are assumed the joint acceptance Viill have

non-zero minima. Similarly when the oxcitation has a non-zero value of al

complete cancellation will not be possible and the acceptance minima will be

non-zero. Figures 2.2 to 2.5 show that, when a, is small, the shape of the

acceptance curve changes rapidly as al increases, and the maxima and minima

are quickly blurred to give, first the "ripple" effect shown when al = 0.05

and then the smooth curve shown when ca = 0.3. Changes in al of + 50% about

aI = 0.1 for the range of - shown in the figures will give changes of up to

+ 50% in the longitudinal joint acceptance curves.

The most important characteristic of the curves is the predominant peak

which occurs when there is optimum matching between the mode shape and the

excitation correlation pattern. It has been shown that this peak occurs in

the neighbourhood of.Ll = 2m, but Figures 2.2 to 2.5 show that the position of

the peak depends also on the value of , . As al increases, the maximum value

of the joint acceptance occurs at lower values ofl . This indicates that,

as the rate of decay of the excitation correlation function increases, the

optimum matchingoccurs at convection velocities higher than those associated

with wavelength matching.

The effect of %I on the magnitude of the longitudinal joint acceptance

depends on the associated value of . In the neighbourhood of the peak

value of the joint acceptance an increase in the excitation correlation decay

rate causes a decrease in the joint acceptance. However, for values of-E

away from the wavelength matching condition, a has the converse effect and

the value of j m(m) increases with , • At large values of oi the main peak

will have lost its prominence. It is apparent, therefore, that the effect of
the excitation correlation decay rate on the panel response will depend on

the value of the parameter-El at the frequency considered. At certain

frequencies there will be an increase in response when *I increases whilst at

other frequencies there will be a decrease in response.

Schloemer (1966) has shown that the presence of an adverse or favourable

pressure gradient affects the convection velocity as well as the correlation
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decay rate. In an adverse gradient the increased value of a1 is associated

with a lower convection velocity, and vice versa in a favourable gradient.

[Thus, in general, the net effect produces only small changes in tihe joint

acceptance. The important exception is in the neighbourhood of wavelength

matching, when LI is slightly greater than 2m. In this case the changes in

al and U will increase the joint acceptance in a favourable gradient andc
decrease it in an adverse gradient. However, on the basis of Schloemer's

results the changes should be less than + 50% of J (w), unless there is a

sharp pressure gradient.

The second form of the narrow band longitudinal cross correlation

coefficient for O < k1, has an exponential decay term which is independent
c t

of frequency (equation (2.84)) and is inversely proportional to the boundary

layer displacement thickness 6. However, the non-dimensional parameter L

can be used because of the cos -i term in the correlation coefficient.Uc

The joint acceptaace j m(w) can be calculated from equation (2.56) but, for

each mode of order m, there will be a family of curves, with parameter

which correspond to the single curve for mode m when U > k1. The curves

for modes of order m - I to 3 are showL [ vigures 2.6 to 2.8 and it is
seen that the effect of the parame*er . is similar to that of a, in

Figures 2.2 to 2.5. This is to be expected fo-,m the similar forms of the

correlation coefficients. The effect of a 2 in not shown separately in this

analysis but it can be included if the parameter . is replaced by (o.-). L
•6

Figures 2.6 t, 2.3 contain the curve for - 0.37 which is the
Uc

bounding value, frfm bhe restuts of Bull (1963), between the two forms of

longitudinal cross correlation coefficient. The figures can be separated
c6"

into two regions, region (1) where-c >. 0.37 is valid and region (2) where

- < 0.37 is valid. The regions are marked in the figures, with vertical

boundaries inserted at the points where the joint acceptance curves cross

eaah other. In region (2) there are separate joint acceptance curves for

each value ofl but, as L decreases (for constant ) a stage is

reached where - 0.37. The joint acceptance is then independent of
C Liw

further changes in and retains the value given by the -6 a 0.37 curve.
cU
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Foa' small values of L-a- below the first vertical boundary line, the

condition < 0.37 is satisfied for most practical value's of' In

the region oi the wavelength matching the condition < 0.37 is satis-

fied except in the thick boundary layer case when-<30, approximately.

At higher values of L the condition-c- > 0.37 is valid for many values

cf Uc

The data in Figures 2.6 to 2.8 can be presented in an alternative form,

with a as the curve parameter, to show the effect of boundary layer thick-

ness. Typical curves for modes of order 1 and 2 are shown in Figures 2.9

and 2.10. The form of the correlation coefficient in equations (2.82) and

(2.84) suggests that the boundary layer thickness 6*, which is present

only in the exponential decay term, has less influence than the correlation

length arising from the cosine term. This is borne out by the results in

Figures 2.9 and 2.10 where, except for the m = 1 mode and certain low

value ranges of L in the m = 2 mode, the curves vary slowly with 6*.

Similar conclusions apply to the higher order modes. The results show

that, depending on the value of J , jM_(w) can either increase or decrease

when 6P increases.

The curve of a 0-- , 0.37 is shown in Figure 2.9 and divides the
CU

figure into the two regions, described previously, in which the two forms

of the cross correlation coefficient are talid.

2.6.3 Lateral Joint Acceptance

In the lateral direction the correlation coefficient is simplified by

the absence of the convective (cosine) tern but the computation of the

joint acceptance is more difficult because the boundary between the

two alternative forms of the lateral cro~ss ccrrelkt.,n roefficient is a

function of separation distance. The two forms cannot be stud~ed separately

as in the longitudinal direction but the lateral joint acceptence cin be

investigated initially by assuming that the correlation coefficient has tne

form

1P , OC9M e- uc . . .( 5-4
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for all values of w. This is the form which is valid when k3 < 0 and the

lateral joint acceptance is given by equation (2.60). The joint acceptance

curves for this approximate form can be compared with the acceptances

calculated for the full cross correlation coefficient.

The lateral joint acceptance curves associated with the correlation

coefficient of equation (2.85) are shown in Figures 2.11 and 2.12 for the
modes of order m = 1 to 4, and for three values of the coefficientr a3"
The curves are plotted in terms of the non-dimensional parameter L for

direct comparison with the longitudinal joint acceptance, and the form of

the acceptance curves is seen to be different in the two directions. When

the parameter LI is replaced by ( • ) all the curves for a given mode m

in Figure 2.11 or 2.12 will collapse onto a single curve. In tne limit

when 0 ÷ 0, the excitation is again similar to the case of a wziformly

distributed load and the lateral joint acceptances for all even order modes

tend to zero. The odd modes have non-zero joint acceptances for this
limiting case and the maximum for the m a 1 mode occurs at 0 - . In

the higher order modes the joint acceptance increases to a maximum in the

neighborhood of 2m, and then continuously decreases as c increases.

When the complete representation of the lateral cross correlation

coefficient in equations (A.21) and (A.22) is used, the joint acceptance

curves have the forms shown in Figure 2.13 for the first three modes,

being used as the curve parameter and the value Of i3 t 0.715 being taken

from the boundary layer measurements. For comparison, the corresponding

curves for the approximate correlation coefficient, equation (2.85), are also

shown in the figure. At high values of L when the condition k3 <. 0 is

satisfied, the approximate curve fully represents the joint acceptance.

However, as decreases in value, the approximate curve diverges from

the fully representative curves, the curves for the highest values of

showing the greatest divergence. The shape of the approximate curve is

similar to those of the family of curves with parameter 6 except at low

values of V6 where k3 > L3 and the approximation is no longer valid.

The accuracy with which the lateral joint acceptance can be represented by

the simple form depends on the value of but there is reasonable
-47-hr s esoal



accuracy, to within a factor of 2, for the range of • shown < 60)

except at very low values of .

The presence of the constant term c in the lateral correlation

coefficient of equation (A.22), which was obtained from the measurements

of Bull (1963), can ot be explained satisfactorily except as an inter-

ference effect due to background noise in the wind tunnel. It is

•i probable that under ideal conditions the correlation coefficient would

tend to zero at large separation distances and be of the form

-0.254~ L31
1 (0 &,=) e
I when 1&31 < k 3  . . . (2.86)

The correlation coefficient in equation (2.86) provides a reasonably

good representation of the measurements of Bull (1963) at low separation

distances but not at large separations (see Figure A.6). However, it is

of interest to compare the lateral joint acceptance curves predicted from

the two alternative correlation coefficients. A comparison on this basis

is shown in Figure 2.14 for modes m =1 to 3, and = 40. There is good

agreement over most of the range of i , the agreement being better than

that obtained from the lateral correlation coefficient given by equation (2.85).

The differences between the acceptance curves again occur primarily at low

values of L-I where the correlation coefficient form for k3l < k 3 is the

most important, but disagreement is never greater than a factor of 2. On

this evidence it appears that the panel response ustimated on the basis of

a lateral correlation coefficient of the type shown in equations (A.21) and

(A.22) would not differ greatly from that estimated from the modified

correlation coefficient given by equations (A.21) and (2.86).

2.7 Direction of Convection of the Pressure Field

2.7.1 Joint Acceptance Terms

In equation (2.36), and in subsequent analysis, it was assumed that the

pressure field was convected in the positive x, direction. It is possible

now to extend the analysis, under certain conditions, to include the con-

vection directions which are inclined at an angle e to the x1 direction.

This is of particular interest because practical structures are not
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necessarily placed with one axis parallel to the direction of convection

of the excitation field.

From Section 2.3, the total panel joint acceptance can be defined

as

J M) 4 f f (_x')4p_(X")p (ý 1 O;w) dX' dX" . . . (2.87)
aa A2 A --

where the excitation cross correlation coefficient at zero time delay isc 1€,€ 3,w)

P 1' 'E3'°;w) = M
p

The (x 1 ,x 3 ) rectangular Cartesian coordinates will be retained as

the fixed ones of the panel and new Cartesian coordinates (Y1 ,Y 3 ) will

be introduced such that the pressure field convection velocity is in the

positive y, direction, and is inclined at an angle 8 to the positive x,

direction, for 0 < 0 < • In the new coordinate system the narrow band

cross correlation coefficient is

P (ni,n3,o;w) -I (nbo,i;W)l.lp (O,n 3 ,T;W)l cos bnl . . . (2.88)
p p p

where _q (nl,n 3) - Y" - Y'

and where the assumed forms for the correlation coefficients in the Y,

and Y3 directions are

a ll~
10 I (nl,,O x;w)l - e-a l *

"...(2.89)
iP (o,n3,T;w)l e- ealn31

Transforming to the (x1 ,x3 ) coordinates, the cross correlation

coefficient becomes

I--a

0 p(E,3o;) e 1'li e10 - 1R31 co. (b1 ,÷ b3C3) . . . (2.90)
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where aLI = alcos 0 + a3 sin 0

a3' = alsin 0 + a 3 cos 0
b = b cos . . . (2.91)

b 3  = b sin e

Substituting equation (2.90) in equation (2.87), the joint acceptance

is

Jc( 4 ~2 LI fLl *pm( xl'),m(Xe")e-a' 1ý1Icos b1 EI dx 1 ' dx 1"

00 0
L3  L3  i

x f- f "m(Xl')•m(Xl")e-a.3 IICos b3•3 dx3 ' dx3"
00 0
Ll Ll -al

-2(I * (xl')i* (xI IIea IE1jsin b1~l cix1' dx1??
imi fL3 L3

x f f pn(x3')n(x3 ")e-a3'I&31sin b3E3 dx3' dx3" )
0 0

(2.92)

From arguments similar to those used in the derivation of equation

(2.22), it can be shown that the double integrals in the second term of

equation (2.92) are zero. Thus

Ll Ll RuJb ~ d 1  x1

J(W) 2f f *2J m(XI,)Jm (XI,)e- 1  COS bl1 dx1' dX"

L3 L3
2 3 -2 f *n(x3')*n(x3")e'a3'lE31 Cos h3t3 dx3' dx3"

0 0 . (2.93)

In Section 2.6, when the excitation pressure field was convected in

the x1 direction, the excitation correlation function and the panel modal

shape were assumed to have fcrms which were separable in the x, and x 3

directions, and the panel joint acceptance could be separated into components

in the two coordinate directions. From equation (2.93), when the x, axis

is inclined at an angle 0 to the direction of convection, the panel joint
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I
acceptance can be separated again into xl and X3 components, but the

associated excitation correlation functions (equation (2.91)) are combinations

of the empirical longitudinal and lateral functions. The double integra&•

in equation (2.93) have the same form as equation (2.56), so that the general

solutions of equation (2.56) are applicable. i
The integrals in equation (2.93) show that the angle of convection

influences the wavelength matching condition through the parameters bl and

b 3 , and the effective correlation decay rate through the parameters all and a 3 '.

From equation (2.91), for a, Z 0, a3 > 0 and 00< e0900, al' and aS' have

a maximum value at tan-1 (A) and tan- 1 (@I) respectively, the maximum
a, a3

being /(a,2 + a32 ) in each case.

The panel joint acceptance, equation (2.93), has been evaluated for

cross correlation coefficients of the form shown in equation (2.89), where

the coefficient in the Y3 direction has, for boundary layer excitation, the

simple form discussed in Section 2.6.3. The values of the joint acceptance

calculated from equation (2.93) will not represent completely the response
to boundary layer excitation but will give an indication of the effect of

the direction of convection. Joint acceptance curves have been calculated

for the conditions

O.lW 075
al a -U and a3  U

ac c

and results for modes of order 1-1, 2-2 and 3-1 are shown in Figures 2.15 to

2.17 for a panel of aspect ratio 1.4545. This particular aspect ratio was

chosen because it corresponded to the value for one of the experimental

panels. The panel joint acceptance was calculated also for acoustic

excitation, typical results for the panel of aspect ratio 1.4545 being shown

in Figures 2.19 and 2.20. The assumed correlation function gives a better

representation of the acoustic excitation field than it does for the boundary

layer pressure field.

2.7.2 Discussion

The panel joint acceptance Ja (w) can, from equation (2.93), bej -51-



expressed as the product of two functions each of which can be represented

by a curve similar in shape to the curve for the appropriate mode order in

Figure 2.1. Thus at all angles of convection the panel joint acceptance

curves show the characteristic maxima and minima associated with the

corresponding longitudinal joint acceptance curves in Figures 2.1 to 2.5,

but the correlation length ý in Figure 2.1 is replaced by in the
Cos d

si d in the X3 direction. Hence the locations of theSxI iretionandsin e

wavelength matching peaks in the curves will be at values of and

which are lower than those associated with flow along the x, and X3 axes res-

pectively. The maxima will occur at positions such that

LL 2m or < 2n

For the full panel joint acceptance J (w) the parameter is

replaced by the aspect ratio L3  and the peaks will occur at positions• ~L3
such that

< 2m or 2nLI
<-- L3

whichever is the larger. For example, in Figure 2.16, the wavelength

matching peaks occur at values of where < 2.909n.

When the panel is considered as a complete unit, the mode shapes in

the x1 and x 3 directions combine to give a standing wave pattern which,

for a simply supported mode of order (m-n), is inclined at an angle mn to I
the xI axis, where

* tan (L' .
mn L3  m

The results of equation (2.931 for acoustic excitation, show that

the panel joint acceptance is a maximum when the angle of convection 8 is
equal to *.* Thus for plane wave excitation there is maximum panel
response when the panel inclination to the direction of convection is such
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that the excitation correlation pattern matches with the overall modal

pattern of the panel. For the mode of order (2-2) in Figure 2.20,

the maximum response occurs when

0 = cpmn - 550301.

Exceptions to this rule occur for modes of unit order in the x, or

x3 direction, but it has been shown in Figure 2.1 that the results for

the unit order mode differ from the general results for the higher or'ý:e

modes.

In the case of boundary layer excitation, Figures 2.15 to 2.17 show that

the maximum response occurs when 6 = 0=0 or 0 = 900, but not, as in the

acoustic case, when e = •M. The difference between the results for boundary

layer and acoustic excitation arises from the exponential decay of the boundary

layer correlation function. When 00 < 0 < 90°, alt and a3' will be greater

than al (assuming that'al < a 3 ), and each will have a maximum value of
0.723w for the assumed boundary layer correlation coefficient. The in-Uc

creased correlation decay rate reduces the acceptance peaks and thereby

cancels the wavelength matching effect when e approachesn
mn

If interest is centred on one particular value of the results for

both boundary layer and acoustic excitation show that the panel joint

acceptance may have a maximum value when 6 has an intermediate value in the

range 00 to 90°. The effect is of most importance for acoustic excitation,

where there is no decay term in the excitation correlation function,

particularly when the value of k is associated with a zero of the joint

acceptance at some value of 6. In Figure 2.20, the (2-2) mode has zero

joint acceptances when 8 * 00 and 900, and, when 4 4, has a maximum in

the neighbourhood of 6 • 500. Conversely the (3-1) mode has MxUM

values at 6 n 00 and 900 and an intermediate minimum. The results for

boundary layer excitation in Figures 2.15 to 2.17 show that, for low

values of - , the maximum response occurs usually when 0 a 00 or 0 * 900,

but at the higher values of the curves show a tendency to become
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symmetrical about a maximum value at e = 450. This implies that, when

the correlation lengths are small relative to the modal wavelengths, the

aspect ratio effect becomes small and the panel is effectively square.

The effect of aspect ratio is illustrated in Figure 2.18 for the

(3-1) mode of a series of panels having aspect ratios ±.0, 1.h 5 45 , 2.0

and 4.o, corresponding to the aspect ratios of the experimental panels.

The figure contains panel joint acceptance curves for the limiting

angles of convection e = 00 and e = 900. When 0 = 00 the aspect ratio

has a small effect on the joint acceptance, the value of J (M) increasing

?• by a factor of approximately 2.5 for a four-fold increase in aspect ratio.

When e = 90 the effect is much greater, the same change in aspect ratio

causing the joint acceptance to change by a factor of 25. Similar results

will be found for intermediate values of 0, the effect of aspect ratio

being less than that shown when 6 - 900. The variation of panel joint

acceptance with aspect ratio is fairly simple in the example shown but

will be more complicated for Yigher order modes.

2.8 Cross Acceptance

The panel joint acceptance for boundary layer and acoustic excitation

has been discussed in general terms in Sections 2.6 and 2.7, using the non-

dimensional parameters L and From equations (2.64) to, , L3"
(2.6T), the longitudinal and lateral cross acceptances can be presented in

a similar way. However it can be shown that the cross terms in the displace-

ment power spectral density function are usually much smaller than the joint

terms, as is shown by the results in Chapters 5 and 6, except under conditions

of close natural frequencies and high damping in modes for which the sum of

the lateral mode orders (n+s) is even. Therefore a general study of the cross

acceptance is of limited use and will not be undertaken in the present

discussion, but the form of the cross acceptances can be illustrated by a

comparison with the joint acceptance for particular conditions which apply

to one of the experimental panels. The cross acceptance results in this

chapter can be used in the case of heavy damping, when the crosc acceptance

becomes important, provided that due al).owance is made for the assumptions

of light damping which were made in the analysis.
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In Figures 2.21 to 2.23, the acceptance curves are shown for the

4" x 2.75" panel when exposed to the turoulent boundary layer at a flow

speed of U° 329 ft/sec. Differences between the joint and cross

acceptances are immediately obvious and they are due tc the dependence

of the cross acceptance on the mode order pair (m,r) or (n,s), instead

of the single mode order dependency of the joint acceptance. It has

been shown that the joint acceptance is a positive function and in general

exhibits a single predominant peak associated with the wavelength matching

condition. Figures 2.21 to 2.23 show that the cross acceptance has a more

complicated form. In Figure 2.21, the curjes for the real part j (W) of

the longitudinel cross acceptance show the presence of two peaks of similar

magnitude but of opposite sign. Curves for the imaginary part kmr (W) of

the longitudinal cross acceptance in Figure 2.22 also show changes in sign

as the frequency changes. Further, from equatiou 2.44, it is seen that

kMr() = -krM(w).

The joint and cross acceptance curves, in terms of either the non-

dimensional parameters in Figures 2.1 to 2.20 or the frequency in Figures

2.21 to 2.23, show that the peaks are broad, the bandwidths being of the

order of 70% of the centre frequencies. This is parti:ularly noticeable

when the acceptance curves are compared with the resonance peako of the

panel receptance. Thus the panel response will be only slightly lower j
than the maximum coincidence value if the panel natural frequncy lies

within a fairly broad frequency range centred on the vaveleigth matching

frequency.

When the acceptance and impedance terms are combined, the cross term

contributions to the displacement spectral density have the forms shown in

Figures 2.24 and 2.25. The curves in Figure 2.24 are for mode pairs in

which (m+r) is odd and (n+s) is even, and Figure 2.25 shows the form of the

cross term when (m+r) and (n+s) are even. When (m+r) is odd, the cross

term contains the product, given by equation (2.45), of

ha

S..k (w) j' (w)
9*8 2 + ha:
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where ' h are real ;,id imaginary parts of the impedance product

as defined in equation (2.24). If (n+s) is odd, j' (W) = 0 and the
hproduct is zero. From equation (2.51) the impedance term ha_ has

g 2 h 2g9• + hoB

maxima, close to the natural frequencies wc and w of the mode pair, which

are predominant in the curves in Figure 2.24. Secondary maxima are due to

the cross acceptance terms. The sign of the cross term will depend on

the sign of the acceptance terms, on the sign of the receptance term, and

on the sign of the mode shape product of Wia(x)ý(x) at the position x

considered. For the range of frequencies shown in Figure 2.24 the cross

term curve for the (2-1, 5-1) mode pair is positive and for the (1-2, 2-2)

mode pair, is negative.

When (m+r) is even, t',A: cross term contribution contains the product

g

2 gh 2  umr() nsga2 + ha2

As in the previous case, 1 • has maxima at, approximately,g + h
w= wand wV but from equation (M51) 4g has zero values close to the

natural frequencies. Thus the cross term will not have the peaks shown in

Figure 2.24, but will have zeros of the type shown in Figure 2.25 for a

frequency close to 2030 c.p.s. In addition the cross acceptance term j (W)mr.
will have a serieE of zeros shown in Figure 2.21, one of which, for the

conditions cons lered, occurs in the neighbourhood of the natural frequency

f = 1,300 c.l.s. with the resultant complicated response curve in Figure 2.25.

Finally a zero of j (W) occurs in Figure 2.25 at approximately 450 c.p.s.,mr
well away from the natural frequencies of the modes considered. Whenever

the cross term contribution passes through a zero there will be a charge of

sign, but Figure 2.25 shows only the amplitude of the contribution.

The relative magnitudes of the joint and cross term contributions to

the panel displacement power jpec. :ral density function can be compared in

Figures 2.24, 2.25 and 5.8. It is seen that the cross term contribution is

-56-



greatest for mode pairs where (m+r) is odd, but that the contribution is

very small throughout the frequency range.

2.9 L

The response of plates to random excitation has been investigated

theoretically under the general assumptions that

(a) there is no interaction between the plate and the excitation

field;

(b) the vibration can be adequately represented by a series of

normal modes;

(c) there is nr modal coupling due to damping;

(d) the mode shapes have an exact or approximate form which

is separable in the (Xl,X 3 ) directions;
(e) the excitation field is homogeneous and stationary;

(f) the excitation cross power spectral density function car,

be represented in a form which is separable in the (xj,x3 ) t
directions.

In addition it was assumed that the panels were simply supported, and

that the excitation narrow band cress correlation coefficient was of the

exponential decay form. The excitation correlation coefficients for

boundary layer excitation were expressed analytioally from experimental

data of Bull (1963) for zero pressure gradient conditions. A typical

frequency dependent excitation correlation length c was defined in terms

of the separation distance to the first zero of the excitation narrow band

longitudinal space correlation :oefficient.

The most important term3 connecting the excitation end the structural

modes are the joint and cross acceptances, and these have been studied in

detail. Intertst was centred on the joint acceptances because, except in

cases of close natural frequencies and high damping, the cross terms

are negligible relative to the joint terms.

The longitudinal joint acceptance has been studied for the two

correlation forms associated with the Strouhal number regions bounded by
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= 0.37, using non-dimensional parameters and In each
C C L3

region the acceptance curves have a predominant peak in the neighbourhood

F of the wavelength matching condition = 2m, for a mode of order m. Thus

as decreases, due to an increase in U or a decrease in w, the panel
response will increase when L' is greater than 2m and decrease when

is less than 2m.

When the excitation correlation decay coefficient ca is increased the

joint acceptance decreases in the neighbourhood of the wavelength matching

condition and increases for other values of * The value of al affects

also the position of the main peak of the joint acceptance curve, increases

of ca moving the peak to lower values of L Thus, if the pressure field

loses coherence very rapidly the maximum response occurs when the convection

velocity is greater than that associated with the condition 4 = 2m, or when

the frequency is lower than that for = 2m. The condition cq = 0 is

applicable to excitation by grazing incidence acoustic plane waves, and the

joint acceptance has a series of well defined maxima and minima associated

with wavelength matching and mismatching. When al increases the maxima and

minima become blurred into a smooth curve.

In he region -- < 0.37, a family of curves with parameter
• C.•

replaces the single joint acceptance curve for a given value of czI. The

paraete iihas an effect similar to that of the coefficient ali. AL
range of values 10 _ir •-- <80 was chosen, corresponding to the range

experienced in the experimental work and to values which are typical of

full scale aircraft.

In the lateral direction the joint acceptance curves do not exhibit

the wavelength matching peak, because the convection velocity has no

component in that direction. The two forms of lateral narrow band cross

correlation coefficient are separated by a boundary which is a function of

separation distance and not simply of Strouhal number as in the longitudinal

direction. Thus the lateral joint acceptance has a single form which

combines the two correlation coefficients. A simplified form of the cross

correlation coefficient, strictly valid only when k3  0 0, was used to

-8
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estimate tie joint acceptance, for comparison with the full lateral

joint acceptance. Good agreement was observed at high (i.e. when

k3 1 C) but as decreased, the agreement deteriorated. For L 60,

there was agreement to within a factor of two except at the very low values

of LA

Closer agreement between the complete and approximate joint acceptances

was achieved when an approximate cross correlation function was used in the

region [&31 < k 3 . This function assumed that the correlation coefficient

should tend to a zero value at large - instead of the non-zero value6*

measured by Bull. It was shown that conclusions reached for the empirical

correlation coefficients assumed in the analysis should not differ greatly

from thoseapplicable to conditions in which the correlation coefficient has

a zero asymptote.

When the angle of convection e is changed, and - does not have a

fixed value, it is possible to obtain an optimum wavelength matching between

the panel mode shape and the excitation correlation pattern. In the case
of acoustic plane wave excitation, the panel response has a maximum value

when e is equal to the angle Mm which the modal standing wave makes with

the x taxis. For boundary layer excitation, however, the wavelength matching

effect is cancelled by the increased effect of the correlation decay rate, and

the maximum response occurs when e = 00 or 900. If LL has a fixed value,

the response may be greater when the direction of convection is inclined to

the panel axis. The effect is most pronounced for plane wave excitation,

where order of magnitude changes were predicted for certain values of .
When the correlation length is very small relative to the modal wavelength, "

the joint acceptance has values which tend to be symmetrical about the value

for 6 a 450, and the panel is effectively square.

The cross acceptance has not been studied in terms of the non-dimensional

parameters, but the form of the cross acceptance curves was illustrated for

particular experimental conditions. The cross acceptance differs from the

joint acceptance in that it has more than one peak and can be either positive

or negative in sign, depending on the frequency. When the cross acceptances
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and impedances are combined, the resulting cross terms will modify the

spectrum shape determined from the joint terms alone. The cross term

spectra can be complicated in shape, but the modification to the displace-

ment spectra is small for the experimental conditions investigated.

-
i~iI
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CHAPTER 3

Experimental Equipment

3.1 Wind Tunnel

The experimental investigation is concerned primarily with the

vibration of panels exposed to turbulent boundary layer excitation, and

vibration measurements were made when the specimens were iounted in the

wall of a wind tunnel which was designed to have low noise and vibration

characteristics. The wind tunnel is of the induced/flow, non-return type

driven by the injection of high pressure air downstream of the working

sections. The running time is limited to two to three minutes b7 the

storage capacity of the high pressure supply. The tunnel, whce general

arrangement is shown in Figure 3.1, has two working seictions, a subsonic

section 10 feet long followed by a supersonic section 6 feet long, both

of which have a rectangular cross-section with nominal dimensions

9 inches x 6 inches. The subsonic section is slightly divergent to

compensate for boundary layer growth and to provide a zero pressure

gradient. The flow velocity in the tunnel is determined by the throat

area upstrear of the supersonic section, and the use of two sets of tunnel

liners resulted in two operating conditions which had nominal Mach numbers

of M 0- 0.3 and 0.5 in the subsonic section.

To keep the vibration to a minimum the working sections are of massive

steel construction and are mechanically isolated from the injector and from

each other, being connected by flexible couplings. The working sections

are carried on flexible mountings (see Plate 3.1) which isolate them from

vibration transmitted through the laboratory floor. The extraneous sound

field in the test section is kept to a minimum by heavily soundproofing

the injector and diffuser, and the tunnel was always run in a choked

condition so that injector and diffuser noise was not propagated internally

into the subsonic section, except through the subsonic boundary layer in

the sonic throat. The diffuser outlet is outside the laboratory building.

iJ
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In spite of these precautions, measurements by Bull (1963) and Clark (1966)

show that there is a significant low frequency noise field inside the

working section. This noise field can influence the pressure spectrum

on the wall of the wind tunnel, the effect being greater at the higher

Mach number and thicker boundary layers. In Figure 3.2 the boundary

layer spectra are compared with spectra of the background noise field

measured along the tunnel centreline. At low frequencies the boundary

layer and acoustic spectral densities are of similar magnitude and

structural vibration will be due to a combination of the two excitation

fields. Thus panel vibration measurements have been rejected for

frequencies below 300 c.p.s.

Comprehensive measurements of the characteristics of the flow in

the boundary layer wind tunnel have been made by Bull (1963) and it is

necessary to summarise only the data which is of particular interest to

the panel vibration investigation. Table 3.1 contains data for the four

panel positions along the subsonic working section. The free stream

velocity U and the dynamic pressure qo of the airflow are essentially
00

constant along the working section and, for each nominal Mach number M

the boundary layer thickness 6 increases from a value of approximately

0.4 inch at the upstream position to 1.42 inches at the downstream

position, the positions being measured from the tunnel datum (Figure 3.1)

at the upstream end of the subsonic working section. The boundary layer

displacement thickness 6* is defined by

6 f a - PUo) dx 2
0

where p and U, are the local density and mean velocity in the x1 direction,

respectively. The overall root-mean-square pressure fluctuations are

denoted by /V . Under operating conditions the static pressure in the

tunnel working section is below the ambient pressure in the laboratory,

the pressure differential being proportional, approximately, to the square

of the free stream velocity in the tunnel. At a Mach number M a 0.3, the0

pressure differential was approximately 1.0 lb/in2 and, at M * 0.5,
0

approximately 2.35 lb/in2 .
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TABLE 3.1

Summary of Experimental Conditions

Position 1 2 3 4

x inches 22.5 50.5 78.5 106.5

M = 0.3o

U ft/sec 329.4 329.4 329.4 329.4

lqo b/ft 2  122.5 122.5 122.5 122.5

6 inches 0.38 0.72 1.06 1.4o

6* inch 0.055 0.096 0.138 0.179
/(p2) lb/ft 2  0.692 0.668 0.655 0.650

M = 0.5

U° ft/sec 541.7 540.6 539.5 538.5

qo b/ft 2  306 305 304 303

6 inches o.43 0.76 1.09 1.42
6* inch 0.057 0.100 0.139 0.174

/(§2) lb/ft 2  1.745 1.678 1.656 1.658
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In the discussion of the experimental results the flow conditions

will be referred to in terms of either the Mach number or the mean flow

velocity.

3.2 Siren Tunnel

An alternative form of convected excitation field was provided by
the siren tunnel, described by Clarkson and Pietrusewicz (1961). The
tunnel consists of a 12 in x 14 in rectangular duct with an Altec Lansing

Siren at one end and sound absorbing material at the other. The siren

is coupled to the duct by means of an acoustic horn (Figure 3.3). The

test section commences at a distance of 18 inches from the end of the

horn and includes a 24 in x 47 in rectangular opening in one wall of the

tunnel. Plane acoustic waves propagating from the horn will be convected

at grazing incidence over a specimen mounted in the test section opening.

The airflow through the siren orifice is controlled by a speaker coil

modulator which, in turn, is controlled electronically by means of an

oscillator or white noise generator. Within the limitations of the

siren (Appendix A) the spectrum shape, for white noise generation, can

be modified by suitable filters, and this form of excit&tion was used in

the panel response investigation. Whilst the vibration measurements

were in progress the sound field in the duct was monitored using a Bruel &

Kjaer 1-inch diameter microphone, and an overall level of 129 dB was

maintained.
?,i

The duct and horn are heavily soundproofed, but the construction of

the tunnel is less massive than the boundary layer tunnel. Thus the problem

of background vibration was found to be more severe.

The siren requires a continuous air supply for its operation and

there is an airflow along the duct. However, the velocity of the air

is extremely low (approximately 2 ft/sec) and there is no possibility that

it will cause any direct excitation of the panel. There will be the

additional effect of jet noise described in Appendix A.
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3.3 Experimental Panels

The size of the experimental panels was chosen as a compromise

based on several considerations. The 9-inch walls of the working

section were available for the positioning of experimental specimens but

it was desirable that the panels should not extend into the regions of

three-dimensional boundary layers in the corners of the duct. Thus

the maximum permitted panel dimension in a direction perpendicular to the

flow was 6 inches to 7 inches. In the longitudinal direction the panel

dimensions were restricted so that the excitation conditions did not

change significantly over the panel area. Further, the panel fundamental

natural frequency should be well above the frequency limit of 300 c.p.s.,

below which measurements were rejected because of interference from the

noise field in the tunnel. In the initial design of the boundary layer

tunnel there were a series of 6 inch diameter ports along the length of

the working section (see Plate 3.6). Thus panels, which satisfied the

above conditions, could be mounted on 6 inch diameter plugs and inserted

at desired positions along the working section. This method had the

additional advantage that the panels could be rotated so that the major

axes had any required angle of inclination to the flow direction. In

particular the rectangular panels could be rotated through 90 so that t
the minor axes were parallel to the flow.

Thus, the experimental panels were formed by bonding thin steel

sheets to 6 inch diameter circular plugs and the shape of each panel was

determined by the dimensions of a hole cut through the plug. Four panels,

shown in Plate 3.2, were constructed with basic dimensions

3.5 in x 3.5 in x 0.015 in;

4.0 in x 2.75 in x 0.015 in ;

4.0 in x 2.0 in x 0.015 in.

4.0 in x 1.0 in x 0.Ol5in.

Thicker panels were not used because the reduced vibration amplitudes

introduced measuring difficulties. Some experiments were carried out on
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0.005 inch and 0.010 inch thick panels (Bull, Wilby and Blackman (1962))

but the panels were destroyed during initial tests. Replacement panels

were not constructed, partly because the thinner panels showed a tendency

to be affected by tensions introduced during construction, and the

vibration measurements were made on panels of only one thickness.

The construction of a typical panel is shown in detail in Figure 3.4.

The steel sheet was bonded to the carrier plug using Kodak-Eastman 910

Adhesive which set rapidly under pressure, and was cured at room temperature

for 48 hours. To obtain a good bond the steel sheet was completely de-

greased by immersion for ten minutes in a 10% solution of sodium metasilicate
and the brightness of the surface was then enhanced by immersion in an 85%

phosphoric acid solution for two minutes. When the bond had cured the

sheet was clamped to the plug along two sections of the periphery. The

clamps did not determine the edge conditions of the experimental panel,

but were added to prevent the panel from being carried into the tunnel in

the event of a failure of the bond during tunnel operation. Surface

irregularities around the clamping strips were filled with 'Araldite' resin

sc that the complete plug presented a flat surface, flush with the internal

wall of the tunnel working section.

Some of the panels were modified to have static pressure holes inserted

in the rigid face of the steel sheet but in other cases the tunnel static

pressure was measured at plug positions adjacent to the panel position.
It was impossible to determine whether any panel tension was introduced

during construction but every effort was made to reduce tensioning effects

to a minimum. As a guide, the natural frequencies and mode shapes of the

final panels were measured and compared with theoretical values. This

comparison is shown in Appendix C and there is seen to be reasonably good

agreement between the measured and estimated characteristics. The

0.015 inch thick panels did not display the "oil canning" effect observed

in preliminary measurements on the thinner panels, and it was not necessary

to use the stabilising static pressure differential employed by Ludwig (1962).
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3.4 Displacement Measuring Probe

There are several ways of measuring the vibration of a structure

but many of them require that transducers be attached to the vibrating

body. In the case of the experimental panels the additional mass of

the transducers would cause an appreciable change in the vibrational

characteristics of the specimens. Therefore non-contacting capacitance

probes, manufactured by Wayne Kerr Laboratories Limited, were used.

Initially, the C probe, suitable for the measurement of vibration

amplitudes of less than 5 x 10-3 inch was used but later the more sensitive

B probe with a maximum amplitude limit of 2.5 x 10 inch was used, when

it became available. A very sensitive probe was available for amplitude

measurements of less than 5 x 10 inch but great difficulty was experienced

in aligning the probe and panel surface with sufficient accuracy, the gap
-3

between the probe and panel being less than 1 x 10 inch. Slight

distortion of the panel surface made the alignment impossible.

The probes consist of a flat, circular inner electrode which is

surrounded by a guard ring. An insulating sleeve separates the electrode

and guard ring. The outer radius of the guard ring is 0.125 inch for each

probe but the effective radius of the B and C probes is 0.050 inch and

0.0707 inch respectively. The vibration meter acts on a high gain amplifier,

connected to a 50 Kc/sec oscillator, with a feed back loop through a

capacitance of approximately 0.5 pF between the probe and structure under

test. The output of the amplifier is a 50 Kc/sec signal whose voltage

amplitude is proportional to the distance between the probe and structure.

The mean amplitude determines the mean distance between the probe and

structure and the modulation amplitude is a measure of the displacement

of the structure. The 50 Kc/sec carrier signal could be removed by

filtering, and the meter output signal recorded on magnetic tape for

detailed analysis did not contain the carrier signal. For small vibration

emplitudes the amplification provided by the vibration meter can be increased

by a factor of 5 by changing the output from "normalm setting to ' *5

setting. This increased amplification was used when necessary.
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The combined sensitivity of the probes and meter amplifier was

calibrated before initial use and the calibration was repeated on

several occasions during the period of the investigations to check for

changes in amplifier characteristics. The calibration equipment can

be seen in Plate 3.3 where the probe is rigidly mounted above a vibrator.

Attached to the vibrator are an accelerometer and a small plate, the

system being shown in greater detail in Figure 3.5. The movement of

the plate was measured by the probe and monitored by means of a

travelling microscope fitted with a vernier eyepiece, and by means of

the accelerometer. At large amplitudes the probe was calibrated with

reference to the microscope but at low amplitudes visual measurement was

inaccurate and the accelerometer was used as the reference. The block

diagram of the calibration apparatus is contained in Figure 3.6. The

probes were calibrated for sinusoidal oscillations in the frequency range
200 c.p.s. to 1,000 c.p.s. and calibration curves for the Band C probes

are shown in Figure 3.7. Within the accuracy of the method (approximately

+ 6%), the probe calibrations in terms of the r.m.s. displacement are

Probe B:- Normal Setting 8.30 x 10 inch displacement per volt.

÷5 Setting 1.66 x l0o inch displacement per volt.

Probe C:- Normal Setting 1.66 x 10-4 inch displacement per volt.

*5 Setting 3.32 x 0- inch displacement per volt.

The calibration measurements were made for a standard separation gap

between the probe and plate of 3.5 x 10- inch for the B probe and

7.0 x 10-3 inch for the C probe. All vibration measurements were made

with similar gap sizes but, in any case, variations of the separation

distance have little effect on the probe calibration. In Figure 3.8,

the calibration factor for the C probe, at frequencies of 250 c.p.s. and

500 c.p.s., changes by only + 2% for variations in gap size of + 20% from

the standard of 7.0 x 10 inch.

The response of a capacitance probe can be in error if the probe face

and vibrating surface are not parallel, but the errors will not be large
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in general. From Figure 3.9, the capacitance based on the elemental

area of the probe face, is

ktdx,• ~dC = -dv y

where k is a constant of proportionality and y is the distance between

the probe face and the surface of the vibrating structure. The total

capacitance, for a circular probe face of radius r, will be

v= 2kr 2 sjn2 e dO (3.1)
= OY - r cos 0 tan (

where y is the mean separation distance betveen the probe and the

structure, and it is assumed that the vibrating structure is flat and

inclined at an angle 0 to the probe face.

The solution of equation (3.1) is

2C'
=V = l (1 - z 2 )) (3.2)

where C = krr is the capacitance for parallel surfaces separated by a
distance y and

r tan•

The effective separation y' between the probe and structure, as measured 4
by the probe, can be defined by

kffr2
Cv (3.4)

From equations (3.2) and (3.4)

S -Y (1- _(l- Z2))
z

or, on rearrangement,

j f(Lr tan *2) (-5)
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Thus the mean separation exceeds the measured value by a distance

Ay = y y', and from equation (3.5)

r rtan 0 )2

S= (. . .(3.6)

Because of slight curvature of the experimental panels and small

errors in aligning the measuring probe, it was impossible to position the

probe so that the face was parallel to the panel surface. The angle

between the panel and the face of the probe could not be observed visually

but it was estimated by advancing the probe until the guard ring touched

the panel. This condition was indicated by a sudden loss of signal due

to shorting of the measuring circuit.

When the probe guard ring just touches the panel

tan* = 4R

where R is the outer radius of the guard ring and Ys is the value of • when

the probe is shorted out. Then, from equation (3.6)

(-rY. .2 (3.7)

For the Wayne Kerr C probe, 8.768 y' wher (measured in

inches) is the separation distance indicated just before shorting occurs.

Equation (3.7) now becomes

9.607 (.)2 . . . (3.8)

y y

From equation (3.8) the error due to slight misalignment of the probe

and panel is small and cannot exceed 9.607%, since 41 cannot exceed unity
y

in practice. Further the value of Ay is always positive because the right

hand side of equation (3.7) is positive definite. Thus the probe will

alvays underestimate the mean separation distance.
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In practice it was found that the C probe alignment could be adjusted

to an optimum position for which the guard ring and panel touched at an

indicated separation y' less than 1 x 10-3 inch, corresponding to an angle
s

of inclination of approximately 0o35' From equation (3.8), for

y= 7 x 10- inch, the error due to the surfaces not being parallel is

only 0.2%. For a system in which the vibrating system is rigid and moves

so that the angle 0 between the probe face and vibrating surface is constant,

then the above error will apply to the distance measurement only. The

vibration amplitude is a measure of the difference between the maximum and

minimum distances and both these distances are affected equally by the errors.

Calibration checks confirmed that vibration measurements were not affected

under these circumstances. In the present investigation, the vibration is

in the form of distortion of the panel surface, and the angle between the

panel and the face of the probe will not remain constant. However, for the K
displacements shown in Figure 5.2 and Table 6.1, the error is less than that

estimated above for static misalignment. Thus errors due to the panel

surface not being parallel to the probe face are negligible in the vibration

measurements of the experimental panels.

For the panel vibration measurements the probe was carried in a holder

which allowed fine adjustment of the probe face relative to the panel surface. I
The holder was attached to a rigid traverse gear which, when mounted on a

boundary layer tunnel side plate as shown in Plate 3.4, allowed the probe to

be moved over the full face of the panel. The traverse gear, whose

dimensions are shown in Figure 3.10, was designed to minimise vibration

interference. The combined system, of boundary layer tunnel side plate

with attached traverse gear, could be used at several positions along the

tunnel working section, or at positions away from the tunnel, for example

in the siren tunnel and freely suspended from a gantry for damping measure-

ments (Plate 4.1). When the side plate was placed in the siren tunnel, as

shown in Plate 3.5, the remaining open area of the test section was covered

with wooden boards.
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3.5 Signal Analysis

The output signal from the Wayne Kerr vibration meter was recorded

for a period of one minute on magnetic tape at a tape speed of 15 inches

Sper second. At the end of each panel vibration recording, a 500 c.p.s.

calibration signal of known amplitude was recorded to provide a datum when

replaying for analysis.

An initial analysis of the vibration was made by an automatic

frequency sweep to indicate the location of the peaks in the spectra.

The sweep rates were too fast to provide statistically reliable

information about the spectral density and a more detailed analysis was

then carried out using the filters of either 1.2% or 2.0% bandwidth in

the Muirhead-Pametrada Wave Analyser. The output signal from the filter

was integrated for a period of 50 seconds to ensure statistical reliability

(see Appendix B). The integration period was chosen after results had

been compared for integration times of 10, 20 and 50 seconds. Taking

the results for a 50 second integration period as reference, the measured

spectral density obtained after 10 seconds integration was within + 22%

of the reference. After a 20 second integration period the scatter was

reduced to + 15%.

3.6 Pressure Equalising System

In many cases it was desirable that the panels should be unaffected

by the static pressure differential between the tunnel working section and

the laboratory. Thus the panel face external to the tunnel was enclosed

in a box which could be evacuated to tunnel static pressure. Automatic

equalisation was achieved by connecting the box to the tunnel working

section at a point downstream of the experimental panel (see Plate 3.6).

Final equalisation was carried out through the small radial holes, shown

in Figure 3.4, in the plug carrying the panel. Unfortunately, this

system created acoustic disturbances in the equalising system and the

tunnel, which resulted in spurious vibration of the panels (Bull, Wilby

and Blackman (1963)). Therefore an alternative system was adopted in

which the small holes in the plug were sealed and the box was evacuated
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by a vacuum pump. Because of air leakage through the adjustablc. carrier

for the capacitance probe it was necessary to run the pump in a throttled

condition whilst the panel vibration measurements were being made. To

reduce the effects of a fluctuating airflow and pump noise, a large, baffled

reservoir, with a volume approximately 450 times greater that. that of the

box, was connected between the box and the pump.

The pressure equalising box is shown, mounted on the plug, in Plate 3.7.

The lid was attached to the box by two clamping strips, with a rubber sealing

gasket between the box and the lid. A small pressure tapping hole was

inserted in the lid, which also contained a large hole for the probe

holder. A rubber '0' ring formed the seal around the probe holder and

the only air leak occurred along the screw threads for the probe adjustment.

This leak was very difficult to seal completely because of the necessity

for final adjustments to the distance between the probe and panel surface

when the tunnel was operating. The detailed arrangemerit of the box and

panel is shown in Figure 3.11, the internal dimensions of the box being
5.0 in x 3.5 in x 2.12 in, where the last dimension includes the rubber

seals. The effective volume inside the box is increased by the addition
of the volume of the rectangular hole in the carrier plug.

The complete pressure equalizing system is shown in diagrammatic form

in Figure 3.12. The box was connected to the reservoir by a flcible pipe

of 1-inch diameter (internal) aid 170 inches in length, with a control tap

at a distance of 50 inches from the box. The reservoir was connected to

the pump by a short length of flexible pipe. When panel vibration measure-

ments were made in the boundary layer tunnel, the box was evacuated to

approximately the tunnel operating static pressure, the box pressure being

indicated on a large (7 feet) water manometer. When the tunnel airflow

was turned on, the small manometer was opened and the pump controls adjusted

until there was a zero pressure differential between the box and the tunnel.

This method was sufficiently sensitive for equalisation to be achieved to

within + 0.2 inch of water in the short time available for adjustment.
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3.7 Background Vibration and Equipment Noise

The side panels of the boundary layer wind tunnel and the traverse

gear carrying the measuring probe were constructed so that the background

vibration arising from relative movement between the probe and tunnel side

plates would be a minimum. In spite of the precautions there was some

relative movement which was measured by replacing the experiment panel with

a 1.138 inches thick steel plug. The background vibration signal was

recorded and analysed in the way described for panel vibration measurements.

The recorded signals contained also contributions arising from electronic

noise in the measuring equipment. For example, it was found that in certain

acoustically noisy surroundings the Wayne Kerr vibration Leters were subject

to microphony. The positioning of the. meters was restricted by the 10 feet

length of low capacitance cable connecting the measuring probe to the meters.

Thus it was often difficult to distinguish between background vibration and

instrument noise.

Background noise spectra, containing background vibration and equipment

noise contributions, are shown in Figures 3.13 and 3.1h for boundary layer

and siren excitation. The probe calibration curve was used to convert the

signal voltage into an "equivalent displacement" GE(f) to give convenient

comparison with the vibration spectra measured for the experimental panels.

When the spectra in Figures 3.13 and 5.12 are compared, it is seen that the

background signal can be neglected except at certain frequencies where a

high peak in the noise spectrum coincides with a trough in the panel

vibration spectrum. The background vibration spectra show little variation

with position of the traverse gear along the tunnel working section and

with tunnel airflow velocity, so that the most critical ratios of vibration

signal to background noise occurred at the lower speed and the thinnest

boundary layer. Even for these conditions the panel vibration spectra were

affected only at certain frequencies where the panel vibration was a

minimum, and corrections could be applied to the measurements.

Figure 3.13 compares background spectra measured in the absence, and

in the presence, of boundary layer wind tunnel airflow. In both cases the

vacuum pump was running in the condition used in panel vibration measurements.
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It is seen that there is an increase in background spectrum level whenf

the tunnel is running with large increases occurring at certqin frequencies.

These peaks could be due to mechanical resonances in the traverse gear or

"to microphonic resonances in the measuring circuitry. When the tunnel

was in operation the background spectrum showed little change when the

pump was switched off. The effect of the vacuum pump on the vibration

of the experimental panels was checked in the absence of the airflow and

was found to cause no significant vibration.

Measurements in the siren tunnel showed that the background signal

was greater than that observed in the boundary layer wind tunnel, the

corresponding spectra being compared in Figure 3.14. The increase could

be attributed to the less rigid mounting of the boundary layer tunnel side

plate, the siren tunnel not being designed to the same vibration free

criteria as had been employed in the boundary layer wind tunnel, and to

increases in traverse gear vibration and instrument microphony due to the

increased noise level in the acoustic environment. However, the background

equipment noise spectrum had a negligible effect on the panel vibration

spectra in the frequency range of interest.

!I
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CHAPTER 4

Panel Damping

14.1 Introduction

The prediction of panel response to random excitation, and the estimation

of resolution loss corrections for measured response spectra, require a

knowledge of the panel modal damping for the conditions of interest. Thus,

in the present investigation, the effects of several parameters on panel

damping have to be measured. For zero airflow, changes in modal damping due

to the presence of the pressure equalising system and the tunnel working

section have to be studied. The effect of airflow in the boundary-layer and

siren tunnels has to be measured also.

The zero and non-zero airflow conditions require different approaches to

what are essentially the same methods of damping measurement. For zero airflow

discrete frequency excitation was used, with possible methods of damping

measurement being provided by the oscillation decay curve, the amplitude

response curve, or the amplitude-phase response'curve. The presence of the

airflow requires the use of random excitation techniques, but the associated

methods of response autocorrelation decay, power spectral analysis, and

excitation-response cross power spectral analysis are basically similar to

the above methods for discrete frequency excitation. The discrete frequency

approach is well established, the advantages and disadvantages of the

different experimental methods having been discussed in detail by Mead (1959)

and Bishop and Gladwell (1963). Therefore only a brief outline is necessary.

Random techniques have not been used widely and they will be discussed in

greater detail.

The damping of the panel modes will be a combination of structural

(hysteretic) and acoustic (viscous) damping where, by definition, a hysteretic

damping force is proportional to displacement and in counterphase with velocity,

and a viscous damping force is proportional to and in counterphase with velocity.
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Measurements have shown that the damping of the panels is small, so that

it can be represented adequately in most cases by considering it to be

completely hysteretic or completely viscous. Thus it was not considered

necessary to measure the relative magnitudes of the two forms of damping

present in the panels. In general, the acoustic radiation will be

smaller in the anti-symmetric modes than in the symmetric modes and will

be of most importance in the lower order modes, particularly in the

fundamental. When the pressure equalising box is placed over one face

of the panel, the reverberant conditions in the box will reduce the

acoustic damping, and this could be further reduced by the presence of

the boundary layer tunnel working section where absorption is provided

only by the open ends of the tunnel. Hence it was assumed that, under

the experimental conditions, the panel damping was mainly hysteretic in

nature. This assumption causes no problems for harmonically varying loads

but difficulties arise in random excitation. These will be discussed in

section 4.4. The term "loss factor" will be used for the hysteretic

damping factor, to distinguish it from the viscous damping ratio or factor.

4.2 Discrete Frequency Excitation Methods

4.2.1 Amplitude-Phase Response Curve

Theoretically, the most suitable discrete frequency method for the

panels is the amplitude-phase response curve. The method takes into

account the amplitude and phase of the vibration and is basically more

accurate than the direct amplitude methods. However, for reasons which

will be discussed later, the method was found to be unsuitable for certain

experimental conditions.

The use of the response amplitude-phase curve for the estimation of

modal damping was developed by Kennedy and Pancu (1947) and the method

has been applied to a wide variety of problems. The method has several

advantages over direct amplitude methods and permits estimates of modal

damping to be made when there are large off-resonant vibration aplitudes,

and when two modes have close natural frequencies, provided that the

damping is not too large.
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For a single-degree of freedom system, when the hysteretic damping

is expressed in terms of the complex stiffness, the equation of motion

is

M w + K (0 + iv )w = F e Wt (4.i)

for simple harmonic excitation, where v is the loss factor and M , K
rr r

are the modal mass and stiffness respectively.
_ iwt

Assuming a solution of the form w we , then the displacement

for unit force amplitude is

F (K -M w1 ) Kv M r ~w

r= ( Hrw') +.vrr
--p =(r - rmZ ir~r Mr(rm) +irmrZ=

P r*

( . . .2)

Thus the locus ofV in the Argand plane is a circle (this is only

approximately true For viscous damping). Fcr a multidegree of freedom

system the amplitude-phase curve will be modified by off-resonant vibration

eiad Kennedy and Pancu assume that the off-resonant contribution is constant

in amplitude and phase in the neighbourhood of the natural frequency. The

errors imposed by the assumption are smallest when the resonant loop in the

response curve corresponds most closely to a circle, and the errors increase

"as the loop departs from a circular shape. It is assumed also that there

is no modal coupling due to damping.

S~Kennedy and Paneu showed that, when the response curve of equation (4.2)

is drawn, the natural frequency wr is located at the point where the rate .

of change of arc length with frequency, or more accurately with (frequency) 2 ,

has a local maximum. The procedure for finding the modal damping is as

follows. The natural frequency ur is located as indicated above and the

best circle is fitted to the experimental curve in the neighbcurhood of Wr"

A diameter drawn from the natural frequency will cut the circle at a second

point which is the "displaced origin" for the mode. The vector associated

vith this point corresponds to the off-resonant vibration. Using the
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displaced origin as a datum, the frequencies w, and W2 (W2 W>) of the

half-power points on the resonance circle can be located by geometrical

construction, the half-power points being defined by

l w l 2 1-_2
2

where the amplitudes are measured from the displaced origin and 1WrI is the

amplitude at w = wr" The hysteretic loss factor is

•r 2 Wr

9 -W9W1 A-w for small damping . . . (4.3)
W rWr•r •r

When it is not possible to locate the half-power frequencies on the circle,

as is often the case when modes are close together, or when the damping is

high, the loss factor can be estimated from alternative formulae which apply

to the frequency range close to the natural frequency.

4.2.2 Amplitude Response Curve

The modal damping can be obtained directly from the amplitude response

curve only in the case of a single degree of freedom system. For a multi-

degree of freedom system, corrections have to be applied because of the

off-resonant vibration in the other modes of the system. The loss factor

is estimated from the frequency width of the resonant peak, and when this

is measured at the half power points the loss factor vr is again given by

equation (4.3).

In a multi-degree of freedom system the amplitude of vibration in the

neighbourhood of a natural frequency vill include contributions from the

off-resonant vibration of the other modes of the system.

Assume, as previously, that there is no modal coupling due to damping,

and that there is a single damping factor associated with each mode. Further,

assume that the effect of the off-resonant vibra'ion on the amplitude of the

response curve, in the neighbourhood of the resonance, is constant. Then
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JI the amplitude of vibration, corresponding to equation (4.2) will be

F4
IwI = Mr1(C rW)L+ + x . . (4.4)

r r r r

where the dash denotes the "measured value" and where x is the contribution

from the off-resonant vibration and is assumed to be constant. The

-assumption that X is constant will never be fully satisfied because it

implies taat the off-resonant vibration undergoes the same phase changes

as the resonant vibration, an assumption which is not true. The validity

of the assumption can be est imvted from an inspection of the asymmetry of

the measured peak.

Assuming the constant effect of the off-resonant vibration, Gladwell (1962)

has obtained a revised loss factor. The method of calculating the revised

value requires the location of the point of inflexion in the response curve,

and the accuracy of estimation of the loss factor depends critically on the

accuracy with which the curve can be drawn. If dawping is small, the

amplitude response curve has steep sides and cannot be plotted to a high

degree of accuracy. Large errors can arise in tbevalue of the revised loss

factor. When the refined estimate was used in the experimental investigation

there was a large scatter in the results. Thus an alternative method was

used which reduced the scatter and was simpler to apply.

From equations (4.2) and (4.4), with X constant,

Iw'l - IwI + x . . . (4.5)

Expressing X in terms of the single degree of freedom resonant peak

Iwr 1, let

X M IwrI . . . (4.6)

then Iw' I Iwli + CIVrI

At the true half-power point IV 1

and the measured amplitude will be

Iw'I-Iwrl 1• + C') ...(4-7)
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At the resonant frequency, the measured amplitude will be

wr'I = wrI (1 + e) . . . (4.8)

From equations (4.7) and (4.8), the square of the measured amplitude
is

i (1 + VF)2 12 (4.9)
Iwi'12 F 7 7l7) 2**(4)

Thus, instead of estimating the damping from the frequency bandwidth

of the peak at[ ~wi'1 2  = IwI2 (410j1 1 _ 12 . . . (4.1o)

as is the case for a single-degree of freedom system, a revised estimate

can be made from the bandwidth of the peak where the vibration amplitude is

obtained from equation (4.9). The value of the correction term tii+ 2'12

is shown in Figure 4.l as a fanction of c. The method of correction has tlie

disadvantage that an estimate of the value of c has to be made first. This

is often difficult in practice.

The method suffers from several practical disadvantages. 'The off-.

resonant vibration must be reduced to a minimum by suitable positioning of

the exciter and probe. Also, in the case of small damping, the steep sides

of the resonant peaks are difficult to measure accurately and a high degree

of frequency stability is required for the exciting force.

4.3 Damping Measurements using Discrete Frequency Excitation *

4.3.1 Choice of Method

Two alternative methods have been proposed in Section 4.2 for the discrete

fiequency measurement of modal damping, the amplitude-phase response method

being more accurate, in theory, than the amplitude response method. In

practice it has been found that the amplitude response curve gave the more

reliable results because there was an apparent instability of the resonant

frequencies of the panels (see Bull, Wilby and Blackman (1963)). This in-

stability may have been due partly to small irregularities in the frequency
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I
of excitation but, from observation of the phenomenon in other circumstances,

it was probably associated with slight temperature changes in the material

of the panel. The temperature changes could be caused by the panel motion,

eddy currents, or changes in local ambient temperature. The frequency

changes were small when compared with the natural frequency (less than 0.5% fr),
r

but could be of a similar order of magnitude to the frequency bandwidths of

the resonant peaks. Thus, for a nominally constant input frequency, the

response vector at freqiencies very close to the natural frequency would

drift over a large part of the resonance circle. It was difficult to*1 correct fo- this instability in the amplitude-phase curves, and estimates

of the damping showed large deviations from the mean. The amplitude

response method had the advantage that frequency drift was immediately

obvious and the associateddamping measurements could be rejected. Thus

the amplitude response method was often used in preference to the amplitude-

phase method, although the latter was used in the siren tunnel measurements

when the airflow was present but there was no activation of the speaker

coil in the siren.

14.3.2 Measuring Equipment

The panels, being of magnetic material, could be excited electro-

magnetically. The electromagnet was constructed with a 0.5 inch diameter

permanent magnetic core which biased the magnetic field and minimised the

possibility of panel vibration at twice the excitation frequency. The

electromagnet was activated by a Muirhead-Wigan Decade Oscillator (Figure 4.2)

which permitted the excitation frequency to be changed in 1 c.p.s. increments.

The panel vibration was measured using the Wayne-Kerr Capacitance probe C

and was monitored on an oscilloscope to ensure that the motion was linear.

The square of the vibration amplitude was recorded automatically on a

M oseley X-Y Recorder at a sweep rate of 0.1 inch/second. The frequency range

in the neighbourhood of a resonance frequency was scanned manually at a

rate of approximately one frequency increment per second, alternate sweeps

being In the directions of frequency increasing and frequency decreasing.

When applying the amplitude-phase response method the X-Y Recorder was

replaced by a Solartron Resolved Components Indicator. The locations of
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the exciter and probe on the panel surface were chosen to give optimum

values for the resonant to off-resonant vibration ratio, and were on

opposite panel faces. In general the gap between the panel surface and

the end face of the magnetic core of the exciter was 0.625 inch. For smaller

gaps the permanent magnetic field produced small increases in the panel

natural frequencies and at larger distances considerable increases in the

supply power to the electromagnet were required. At the high natural

frequencies it was necessary to reduce the panel-exciter gap, but measure-

ments showed that within the limits used, 0.25 to 0.625 inch, the size of

the gap did not affect the measured damping.

The panel damping was measured under free space conditions by mounting

the panel in a tunnel side-plate which was suspended from a gantry in the

laboratory (Plate 4.1). The effect of the presence of the pressure

equalising system was measured by repeating the free space measurements

when the pressure equalising box, with the reservoir tank connected, was

attached to the carrier plug. Further measurements under zero airflow

conditions were carried out when the panels were mounted in the boundary

layer and siren tunnels, the exciter being mounted inside each tunnel.

This method was also possible in the presence of the airflow in the siren

tunnel because the airspeed was very low. The pressure equalising system

was not required for the siren tunnel measurements but the box and pipe

were fitted to provide conditions similar to those in the boundary layer

tunnel, although the reservoir tank was disconnected.

4.3.3 Measured Loss Factors

Mean values of the measured loss factors are shown in Table 4.1 for

three conditions, viz. both faces free, one face free and one enclosed by

the pressure equalising box, and one face in the boundary layer tunnel and

one enclosed by the box. The values are in the uncorrected form obtained

from the frequency bandwidth of the amplitude response curve at the

measured half power point (equation (4.10)). Results marked with an

asterisk were obtained from response curves which had a high degree of

skewness and the results have a reduced accuracy. In certain cases the

skewness was so large that no reliable damping estimate could be made, and
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the results are omitted. The measurements show that the damping is small,

with loss factors in the range 0.0017 vr < 0.012.

The error in the above loss factors, caused by the presence of off-

resonant vibration, was estimated using the method described in Section 4.2.2.

The magnitude of the off-resonant contribution was estimated by measuring

the panel vibration at frequencies away from the resonant peaks. It was

assumed that the off-resonant vibration in the mode considered, and the

off-resonant vibration of the interfering modes were equal in amplitude but

differed in phase. Thus it was assumed that, if the measured amplitude

at the off-resonant frequency was Xm, then the amplitude contribution from

the interfering modes was . The vibration amplitude was measured on

each side of the resonant peak and the mean value Xm taken. Then =

Based on this procedure, corrections to the measured loss factor are

shown in Table 4.1. For many of the modes, the estimated loss factor corrections

are less than 10% but they are much larger in certain cases. In the complex

Argand plane it can be shown that the above simple theory will overestimate

the required corrections, so that the values shown in Table 4.1 will be

upper limits for the errors in the measurements.

For each mode, the frequency sweep was repeated several times and,

after rejecting unreliable plots where frequency drift had occurred, the

mean values of the loss factors (shown in Table 4.1) were obtained. It

was found that the measured values were generally within + 10% of the mean,

values. During the measurements the excitation force was controlled so

that the maximum vibration amplitude of the panel did not exceed 2 x 10 3 inch.

This limit exceeded the vibration amplitudes encountered in the boundary

layer and siren tunnel measurements, and within the limit the vibration

remained linear and the damping remained constant. However, it waz

observed that there was a reduction in the frequency stability of tihe high

amplitude vibration, which supported the suggestion that the instability

was due to small temperature changes in the panel, induced by the panel

motion.

The results in Table 4.1 show no general variation of damping with
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panel environment. The most important changes are observed in the (i-i)

order modes which show decreases in damping when one or both panel faces

are enclosed. These modes, where the panel motion is everywhere in phase,

are the modes which are most likely to be affected when one face of the

panel is enclosed in a cavity, because there is maximum volume displacement

of the air adjacent to the panel. The presence of the cavity will affect

the free field noise radiation and, when this is reduced, there will be a

corresponding reduction in the acoustic contribution to the total modal

damping. The (1-1) mode of the 4 in x 2.75 in panel was particularly

sensitive to the presence of the pressure equalising system, and the

measured damping varied appreciably when the components of the system were

changed. The magnitudes of the variations were shown in Table 4.2. In all

damping measurements this mode was found to depend on the environment more

critically than did any other mode. From the results in Table 4.2 it is

apparent that the variations in damping coefficient are caused by a resonant

condition in the pressure equalising system as a whole rather than in the

box alone.

In general, the higher order modes show no significant variation with

the surrounding conditions, the exceptions showing a slight reduction in

damping due to the presence of the pressure equalising system. The effect

of the boundary layer tunnel is small because the tunnel enclosure is much

less restrictive on acoustic radiation than is the pressure equalising system.

Bozich (1965) has estimated the radiation damping for panels mounted in a

duct. He assumed that the generalised motion of the panel could be replaced

by the equivalent motion of a rigid piston in a baffle, and the results

shoved that there was a significant change in radiation damping when the

panel area was larger than the duct cross-sectional area. The change was

restricted to the fundamental modes, the effect on the higher modes being

negligible. The assumed representation of the panel motion may not be

very accurate for the higher modes but should be satisfactory for the

fundamental modes. In the present investigation the ratio of panel area to duct

cross-sectional area did not exceed 0.34, so the presence of the duct would

be expected to have a negligible effect.
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Table 4.1

Mean Measured Loss Factors for Zero Airflow

3.5in x 3.5in x 0.O15in Panel

Wind Wind
Face I Free Free Free Free

Tunnel Tunnel

Face II Box Box Free Box Box Free

Mode Uncorrected Loss Factor Correction"' from

Section 4.2.2
1-1 o.oo968 0.00592 0.01025 - 7 - 5 - 16

1-2 0.00281 0.00301 0.00259 - 7 - 5 - 8

2-1 0.00251 0.00277 0.00262 - 9 - 8 - 9

2-2 0.00213 0.00218 0.00213 - 12 - 9 - 9

1-3 0.00237 0.00247 - - 10 - 13 -

3-1 0.00335 0.00335 0.00529* - 7 - 13 - 10

2-3 0.00252 0.00185* 0.00211* - 7 - 6 - 14

3.2 0.00172 0.00211 0.00196 - 10 - 13 - 19

3-3 0.00200 0.00"50 - - 17 - 23 -

4-1 0.00248 .12

+ Correction expressed as a percentage change.

* Results from response curves with a high

degree of skewness.
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Table 4.I (cont'd)

Panels: 4.Oin x 2.75in x 0.Ol5in 4 4 .Oin x 2.Oin x 0.OlSin.

Wind Wind
Face I Tunnel Free Free Tunnel Free Free

Face II Box Box Free Box Box Free
Correction+ from

Mode Uncorrected Loss FactorJ Section 4.2.2

Panel: 4.Oin x .75in x 0.Ol5in.

1-1 o.0o431 0.00709 0.01066 - 4 - 7 - 10

1-2 0.00292 0.00320* 0.00421 - 5 - 17 - 13

2-1 0.00338 0.00328 0.00360 - 7 - 7 - 7

2-2 0.00218 0.00213* 0.00259* - 11 - 12 - 10

1-3 0.00269 o.0o641 0.00530 - 12 - 36 - 28

3-1 0.00312 0.00385 0.00766 - 4 - 10 - 18

2-3 0.00248 0.00323 o.00o80 - 12 - 31 - 37

3-2 0.00208 0.00310* 0.00358' - 10 - 17 - 25

4-1 0.00330 0.00297* 0.00362 - 9 - 29 - 13

4-2 0.00248 1j0.00256 0.00261' - 12 - 21 - 17

Panel: 4.Oin x 2.Oin x 0.Ol5in.

1-1 0.00813 0.00913 0.01203 - 8 - 11 - 12

1-2 - o.oo945 0.0106o - - 18 - 18
2-1 0.O0904 0.00851 0.00593 - 16 - 16 - 12

2-2 0.00492 0.00483 0.00518 - 23 - 27 - 27

3-1 0.00418 mo41l 0.00636 - 8 - 15 - 14

3-2 - 0.00419 0.00457 - - 24 - 25

4-i 0.00421 00422 0.00627 - 7 - 13 - 19

5-1 0.00235 0.00274 0.00331 - 13 - 22 - 20
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Table 4.2

Effect of Pressure Equalising System on

4.Oin x 2.75in x 0.Ol5in.

Components of System Damping Loss

attached to Panel* Factor v

Pressure equalising box alone O. 00447

Box + 55.5in pipe with tap open 0.00982

Box + 55.5in pipe with tap closed O.OOT10
at end of pipe

Box + 55.5in pipe with tap open 0.00T10
+ 11 6 in pipe

Box + full system 0.00413

*second face of panel free to atmosphere
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Under similar conditions, but with an incomplete pressure equalising

system (Section 4.3.2), damping measurements were made in the siren tunnel.

The measured values, shown in Table 4.3, are similar to those in Table 4.1

when one face was free. Also, loss factors were measured in the siren

tunnel in the presence of the airflow. The airflow was extremely small

and it was anticipated that there would be no significant changes in the

damping. The results in Table 4.3 show that, except for the (1-1) mode

of the 4 in x 2.75 in panel, the assumption was justified within the

experimental accuracy. In the absence of airflow the loss factors were

measured with an experimental scatter of less than + 12%, but in the

presence of the airflow the experimental scatter increased to + 25%.

4.4 Random Excitation Methods

4.4.1 General Problem

When an airflow is introduced over one surface of a panel, random

vibration is induced which masks any discrete frequency excitation, except

when the airflow is very small, as in the siren tunnel. In the presence

of random vibration, the estimation of panel damping using discrete frequency

methods is not possible, but the damping can be measured if random excitation

techniques are applied to methods which are similar to those used for

discrete frequency excitation. Additional factors have to be considered

when the random excitation has a spatial distribution over the structural

surface.

The assumption has been mmde in Section 4.1 that the damping in the

panel modes is mainly hysteretic and this caused no problems in the analysis

of the discrete frequency methods where the excitation was harmonic.

However, the concept of hysteretic damping is valid, strictly, only for

harmonically varying loads and care has to be exercised in conditions of

random excitation.

One of the basic properties of random analysis is the equivalence of

the time and frequency domains and the ability to transform from one to the

other by means of the Fourier transformation. When the analysis is applied
to -structural vibrations it is assumed that the complex response function or
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receptance Ha(w) and its Fourier transform, the real impulse function ha(T)

exist and have valid forms. The difficulties associated with hysteretic

damping, for which the impulse response function is not clearly defined, can

be illustrated by the Fourier transform pair H (M) and h (T).

For viscous damping the equation of motion can be written, as in

equation (2.3),

Maqa(t) + Ca&(t) + Kaqa(t) = La()a a

and the receptance is H (W) = 1 1 2i1

aM ((wLCA + 2i zJ

where w =(a) and 6 =

The Fourier transform of H (M is

h(tý) r H H(w")e- iOt i

a 2 a1r

w±-6 W*t sin (W tv|6

a a a

wnich satisfies the conditions for a real impulse function. I
However. for hysteretic dap'n tVic Lagrange equation can be written

in terms of a complex ctiffn•s•, Maqm(t) + Ko(I + j')q(t) - L(t) j
and the receptence is

P0 (w3) & T 7  ia o

The Fourier traisform of H (W) is now I
a-iw, + ji,

h a(t) a 2im (a ii +

which is complex and does not satisfy the conditions of an impulse function.

To overcome th&• problem in random analysis it is suWested that the

hystereti:-: damping is expressed in term of an effective viscous damper by

: -.91-
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writing the Lagrange equation in the form

Mq(t) + C e(t) + K qa(t) = L (t)

where C is the effective viscous damping. The analysis is
be W

then performed in terms of viscous damping and the hysteretic damping

reinstated in the final equation when C is repl&ced by
cxe

4 i.e. 6 is replaced by a.
a

Three methods are proposed in the following sections for the measure-

ment of modal damping. The methods concern the use of the response power

spectrum, the excitation-response cross power spectrum and the response

autocorrelation function respectively, but, for rractical reasons, only the

autocorrelation method was employed finally.

4.4.2 Power Spectrum Analysis Method

The random vibration of a structure can be analysed to obtain the

displacement power spectrum, which will contain a series of resonance peaks

similar to those obtained from discrete frequency excitation sweeps.

Damping estimates can be made from measurements of the frequency bandwidths

of the resonance peaks, in the same manner as that described for the

amplitude response curve method (Section 4.2.2). However, in addition to

the errors occurring in the discrete frequency case, further errors will

arise if the analysing filters do notpossess bandwidths which are smaller

than the resonant peak bandwidths. It has been shown by Forlifer (1964)

that ideally the bandwidths of the peaks should be at least four times

larger than the filter bandwidths, (see also Appendix C).

For single point random excitation, with spectral density S (W),
p

the displacement spectral density at point x is given by

S (w,) I IH Mi Sp(W) * 2. . (4.12)

and, for constant input spectral density, the response is directly

proportional to JHa(a()1 2 . When the excitation force has a spatial

distribution over the structure, the displacement power spectrum has the
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modified form given by

Sd) GO 0 WO (x (x)H *(w)H (W)f f i(xI)ip8 (XV)S (x',x"f,w)dlxtdx"
d -a a a A A -

Thus the resonance peaks in the response spectra will give reliable estimates

of the damping only when the cross acceptance terms (ca8) are small, and when

the joint acceptance and the excitation cross power spectral density vary only

slowly with frequency. These conditions are usually satisfied in lightly

damped structures.

4.4.3 Cross Power Spectrum Method

The discrete frequency determination of modal damping from the amplitude-

phase curve method has a parallel in random excitation where the damping is

estimated from the excitation-response cross power spectrum. As in the

discrete frequency case, the method has advantages over other methods in

which only the power spectral density function is used.

The cross power spectral density can be measured directly if a suitable

pair of matched filters is available, and the resultant experimentL ,'rors

are directly dependent on the loss of resolution due to the filter bandwidth.

Alternatively, the excitation-response cross correlation function can be

measured, and the Fourier transform computed to determine the cross power

spectral density. Errors will arise due to truncation of the correlation

function before transformation, but the magnitude of the truncation error

can be estimated theoretically for an ideal istem.

The cross correlation function for an excitation p(x',t) at x' and

the associated response w(x",t) at x" is defined as

T

T4- -T

and the cross correlation and spectral density functions are related
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by S(p (xl'),w(x"),W) .f R(p(x-),w(xi),t) e-1WT

. . (4.14)-WT

R(p (x'),w(x"),t)- f S(p(x'),w(x"),w) el• dw

As before, assume that the response can. be represented by the

summation of a series of normal modes

w(x,t) - q (t) W (x) . (4.15)

S~th
and the equation of motion for the ath mode is

M qa + Ca + Kq = L (t)

f a iF(x)p(x,t)dx ... (4.16)
A

The solution to equation (4.16) can be written in terms of the

impulse response function h C)

qu(t) = L (t - TI) h(tI) dti

= f f •(x)p(x,t'r )h (ti) dx dT • • . (4.17)
-- A

Prom equations (4.13), (4.14) and (4.17)

s(p(xl),w(x" ),-l J *, (x") f f (x)h,(-r
a - -= A
Lim 1 T

X T-- f p(x',t)P(xt+T-II)dt dx dt1

XT4C *~-T ,x -t- 1

, [ '(x") f f ,,(x)h (, 1 )R (x',x,-t-•r)dx d!1
-~A

9 4 _(48
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Transforming equation (4.18), the cross power spectral density is

S(p(X,),w(X"),W) I C i'(x")H (W) f OWg) Sp(X:X,,w) dx . . . (4.19)
a A

If it is assumed that S (x,x',w) is independent of frequency w, for

a frequency range w, 1 . I W2, then within this range

S(p(x'),w(x"),W) = [ '_(x") A (x') H (w)
a a- a

where A Wx') = ( '_x) S (xX',w) dx for w, W_ W <_ c2
A

Then S (p(x'),w(x"), ) = ic_(x',x") H (w) for W1 5. S < 2 . . . (4.20)

where K (x',x") ( 'p(x") A (x')

a result which is similar to equation 4.2 for the discrete frequency

amplitude-phase curve method of Kennedy and Pancu.

In practice it is not possible to measure R(p(x'),w(x"),T) for an

infinitely long time delay T , and the function must be measured for a finite

range of T, -TI<1 TiT2 . The computed cross power spectrum is then, by

analogy with equation (4.14),
OD

S'(p(x'),w(x"),w) = f. D(T)R(p(x'),w(x"),r)e-'WT dT . .. (4.21)

where D(T) is a weighting function such that

D(T) U 0 for T < - TjI and T > T2

Substituting for R(p(x'),w(x"),r) in equation (4.21), the measured

cross power spectral density can be expressed in terms of the true cross

power spectrum,

i.e. S' -pX)W(', b. dWW)~~x)w" ,,,, .w (4-22

where 0 (W-W') f D(T)ei(W)T d . . ( .2)-"
is the "spectral window". The effect of *D( -w') is similar to that of a
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filter and produces errors which are equiva'.ent to the filter bandwidth

effect in direct cross power spectral analysis. With the assumption of

constant excitation spectral density, equation (4.22) gives the modified

form of equation (4.20), for single point excitation.

S(p(X') ,W(X"),) I K I_(x,x"Pý f D,(W-W')H (w')dw' . . (4.24)

There are several well established forms of D(T) which are discussed

in detail by Blackman and Tuckey (1958) and the simplest, but the least

reliable statistically, is

D(T) = 1 -tI<1.t 2 T 2 • (4-.25)

Using the form of D(T) given by equation (4.25), and the form of

H13 H(w) applicable to viscous damping, Clarkson and Mercer (1965) have shown

that the truncation of the cross correlation function distorts the circular

response curve in the Argand plane. They have computed a series of corrections

by which the true damping can be estimated from measured values of the radius

of curvature of the response curve, and the rate of change of arc length I

with frequency at the natural frequency of the mode. For small values of the

viscous damping coefficient and for practical time delays the corrections are
1 di

very sensitive to changes in the parameter - -

4.4.4 Response Autocorrelation Method

The response autocorrelation method is similar to the response decay

method for discrete frequency excitation and suffers from the same dis-

advantages. For a single-degree of freedom system the exponential decay

rate of the autocorrelation function is proportional to the damping ratio,

but the correlation function for one mode of a multi-degree of freedom

system is distorted by vibration in the other modes. Thus only in special

cases can the equivalent single-degree of freedom decay rate be measured.

It has been shown in equation (2.13) that, under certain specified

conditions, the response autocorrelation function is
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d =• •(x) (x) fA A •(x')* (x")
d IA A a

x f f h(Tl)h (T2 )Rp(x',x',iT+Tl-T 2 )dTldr 2dx'dx_" (4.26)

From physical reasons R (x' ,x", T) and ha(T) are real functions and,
p

therefore, each term in the summation series is real. Alternatively the

response autocorrelation function can be expressed in terms of the

excitation cross-power spectral density

Rd(T) = jj(x)4 (x) I f W4'(x') (x')

as A A

f H *(w)H (w) S (x',x",w)elWT dwdx'dx" . . . (4.27)

where, comparing with equation (4.26), each pair of terms (a,B) and ($,a)

must have a real sum.

Consider the integral

I (x',x") = f H*'()H (w) S (xIxII,W)elWT dw . . . (4.28)
OLB --z) H

For viscous damping it has been shown that

H (W) . (4.29)
Sj( 2) +2i6 ww

with poles at w +w Y(1 - 6 2 )+ i6 W

Equation (4.28) can be evaluated by contour integration in the upper

half of the complex frequency plane, provided that S (x',x",w) is of order

less than w3 , with the result

i , ~ ~~2we -60wal 1 r i •_ )_~~i~,l6z)

IB MMX 'X 4-6 Z) y -D_ 15 (
1  taT..-D sin~w (1-

M~ a W O ( csw,4 aB

+ Si (Di sin(W T4(-6) + DrCsWT16i)I . . .(4.30)
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where

spxx,••+•)•)-r(x' "(xSx ,(4I 6 4i 6 ),,, ) - iS(x',x",( 4- 6 ;+i 6 )w

P a-- a a% a- (% a a a s1 a (t

- Cp (x',x",w) -i%(_x',x",w,) for small damping

w 6 1<<

Sp(X',X-,•s) .. . (h.31)

which is the excitation cross power spectral density at w =w

rs

D Dr + iD'DaB cx8 + x

- (W2-W2 ) - 2w 6 (w 6 + w 6 ) + 2iw 41-62) (, 6 + W 6 )
cx 8 a a xax a 8 a a a a 88

~ (W2-.w2) - 2w 6 (w 8 + w 6 ) + 2iw (w 6 + w 6 ) for small damping

• . . (4.32)

D D6 (W2-W2) + W w (W 6 + W 6 )(W 6 + W 6 • (4.33)cxBGB 8% B cx • c 8 cx c

From equation (4.31), equation (4.27) contains integrals of the form

fA f (x')*(x") C W(',x",w )dx' dx"

and f fQ044 x) ('x, )dx' dx"
A A

which have been ev:luated i n Section 2.3.2. In particular, for the case anB

it ha been shown that

A A * (x)a () Q(x",x",w) dx_ dx" 0 . . . (0.34)fA fA *

From equations (4.32) and (4.33) it can be shown that, for c"8

Dr
a* an . . . (4.35)
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Equation (4.27) can now be written:

Rd(¶) 22 (x) ,e 6 (cos W T+6 sin WT)f f tp(x')l (x")C (x',-"w )dx'dx"
a A a a a 0 a p- a--CE a a a A. A

^-6•a w T
(X W 21e a a r: Ir • ,r",

+ I a x)8(). , 8 rIJsi^cosWaT-D asn,) f••*(x)*,(x")C (x' x- -W )
a aaAdx' dx"

+ (Dp sin T+DrpcosWa ")A (x')ýP (x")Q(x',_x",W) dx'dx"}
CIO a ma . . (4.36)

When the resonant peaks associated with modes a and 8 are well

separated in frequency and, say, wa >> then

DrD

SDa8 26 (4.37)Th± -- "snd "
aB a QB a

From equations (4.35) and (4.37) it can be shown that, for 6a << l,
the coefficient is large compared with the coefficients

and . Then equation (4.36) can be reduced further to

2X)we- a a
Rd (T) 'a 2  COS W a Tff ~l*(x")c - -x~7wj dx*

A A
.(4.38)

When the frequencies w ',W are close together the coefficients

Dr D

1-7 - 2 , and -ý

have similar orders of magnitude and the simple form of Rd(T) in equation (4.38)

is not valid. Any simplification in that case will depend on the relative
magnitudes of the spatial double integrals for the particular excitation

considered.

"If Rd(r) can be expressed in the form of equation (4.38), then the

value of 6 can be determined experimentally. With r as the independentavariable, equation (4.38) has the form

Rd(T) " Z " 6 awaT cOs War (7a= constant)
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which is a series of exponentially decaying cosines. If it is assumed that

the contribution from the ath mode is due mainly to the response in the

frequency range in the close neighbourhood of w , and that the contributions

from the other modes are negligible in this frequency range, then

(T)) Z e- COS W
(]Rd() Wo co ar

where (R (T)) denotes the autocorrelation function obtained from the
filtered response signal, with the filter centre frequency at . This

can be measured experimentally to determine 6,, if the filter response is
flat in the frequency range of interest. In practice the contributions

from other modes will distort the correlation function and will introduce

inaccuracies.

In the special case of single point random excitation the response

autocorrelation function has a much simpler form than equation (4.36). The

real part Cp(x',x",w) of tIe cross power spectral density function reduces

to the power spectral density function S() and the terms for 08# in

equation (4.36) are zero. Thus equation (4.36) reduces immediately to

IRd(T) " 2 (x)Sp() w we6 (cosWT + 6 sin w T)
cia-p i I~ wQ ~ cic

)4.5 Damping Measurements using Random Techniques

4.-5.1 Choice of Method

Theoretically the excitation-response power spectral density method

provides the most accurate estimate of the modal damping but in practice this

is not always true, and it has been found that in certain circumstances a

better estimate of the damping is given by the autocorrelation decay method.

However, the autocorrelation methods suffer from the disadvantage that it can

be used for only a limited number of modes. The cross spectrum and auto-

correlation methods were applied to the experimental panels and the latter

method was chosen as the more accurate for the conditions of the investigation.

Damping loss factors for the panels, determined from the cross- and auto-

correlation techniques, have been compared with discrete frequency results

by Richards, Wilby and McNulty (1965) and a detailed comparison is not

necessary in this discussion.
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4.5.2 Measuring Equipment

In the cross power spectrum method it is necessary to record simul-

taneously the excitation and response. Because of practical difficulties

the boundary layer pressure field on the panel could not be measured and a

second excitation was introduced. This was provided by an electromagnet

which, in association with a white noise generator, produced a randomly

varying magnetic field. The experimental system is shown diagrammatically

in Figure 4.3. The probe, designed by McNulty (see Richards, Wilby and

McNulty (1965)), consisted of two coils wound on a core which was a specially

constructed capacitance probe for use with the Wayne Kerr Vibration Meter.

This design was adopted because of the limited space available in the

pressure equalising box. The core had no permanent magnetism, and one of

the coils carried a D.C. current to provide the permanent magnetic field

necessary to bias the alternating field. The D.C. current was controlled by

a variable resistance to give a predetermined D.C.:A.C. current ratio. The

voltage input to the A.C. coil and the voltage output from the Wayne Kerr

Vibration Meter were recorded simultaneously on a twin track tape recorder.

The panel response contained vibration due to boundary layer excitation and

electromagnetic excitation, both of which were random in nature. However,

the boundary layer induced vibration had zero correlation with the electro-

magnetic excitation and was eliminated when the two recorded signals were

correlated. Correlation was carried out on the correlator developed by

Allcock, Tanner and McLachlan (1962) at the University of Southampton. For

each time delay selected, the signals were integrated for a period of

10 seconds and the correlation coefficient was computed.

The effect of the D.C. field is shown in Figure 4.4. The 3.5in x 3.5in

panel was excited, in zero airflow conditions, at a frequency f a If,1 .1

245 c.p.s., where f 1 is the natural frequency of the (1-1) mode. This

is the most severe condition for the frequency doubling effect because

there is a natural frequency in the neigh.bourhood of 2f but not at f. TOhen

there is no D.C. field the vibration is essentially at a frequency 2f and there

is poor correlation with the excitation, which has a frequency f. Also the

ships of the correlation function is distorted. When the D.C.:A.C. current
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ratio is increased the correlation at the excitation frequency increases

and the correlation curve assumes a true cosine form. Under normal

conditions for damping measurement the excitation is selected to be narrow band

white noise centred at the natural frequency concerned, and the effect of the

D.C. field will be much smaller.

The autocorrelation funct~on for the response was obtained directly from

the measurements of vibration due to boundary layer excitation. When auto-

correlation functions are measured for lightly damped structures it may be

necessary to use long time delays, with associated errors arising from speed

fluctuations on the recording system. The most important speed variations

in this context are the rapid changes due to eccentric drive capstans,

bea&ing friction and uneven driving torque, and the replay frequency is

modulated by the ratio of the rep3W to reoord speeds

f(replay) = f(record) •v (relM
v (record)

For a high quality recording system the speed variations should be

small in amplitude and will have a negligible effect on spectral analysis,

but there could be a significant effect on the auto- and cross-correlation

functions *.en long time delays are used.

To measure the amplitude of the errors for the particular tape recorder

used in the panel response measurements, sinusoidal signals were recorded,

for a tape speed of 15 inches/second, at frequencies of 500, 1,000 and

2,000 c.p.s. vhich covered the range of interest for the damping measure-

ments. The autocorrelation coefficients for the calibration signals vere

determined. Ideally the autocorrelation curve should have the form of an

undamped cosine f
P(T) 0 COs WT

but in practice, because of the speed variations, it has the form of a

decaying cosine. The decay rate can be easily determined if the auto-

correlation coefficients are measured for successive peaks of the auto-

correlation curve, determined by coo wi a 1. The decay curves for the
three calibration signals are shown in Figure 4.-5. When the time delay is
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expressed directly in seconds the autocorrelation decay rate has a strong

dependency on frequency (figure 4 .5(a)), but when the delay is expressed in

terms of the number of periods N of the autocorrelation function, N = fT,

the decay rate is only weakly dependent on frequency (Figure 4.5(b)). From

Figure 4.5, corrections were made to the damping measurements, but in general

the vibration autocorrelation decay was measured over time delays for which

N < 16, and the corrections were small (<2%).

It has been shown in Section 4.4.3 that, in certain circumstances,

the vibration signal can be filtered to provide an approximation to a single-

degree of freedom system, with the associated simple form of the autocorrelation

function. This was achieved in practice by the use of either the one-third-

octave filters of a Bruel and Kjaer Spectrometer or the one-third-octave

filters of a Muirhead-Pametrada Wave Analyser. The choice of filter was

dictated by the mode under investigation. The Bruel and Kjaer filters had

g)od octave discrimination but had fixed centre frequencies at one-third

octave intervals. Thus they could be used only when one of the filter centre

frequencies was close to the natural frequency of the mode under investigation.

For other modes the Muirhead-Pft-rda Wave Analyser, which had variable

filter centre frequenci-es but poor octave diacrimination, was used. Filters

with one-.hir4 octave bf-dvidtha were used so that the maximum information

could be obtawne4 for a single mode. The narrower filter bandwidths

available (4.5%, ? and 1.2%) had characteristics which varied over

frequency ranges which were close to the natural frequency of the mode. Thus

they might modify the single mode response and introduce further inaccuracies.

4.5•.3 Results, from Cross Power SM~ctru Method"

Measurements under zero airflow conditions 3hoved that, in order to

achieve a significant cross correlation coefficient, the excitation should

have a narrow frequency distribution, as in the case of narrow band white

noise. The effect of the bandwidth of tha white noise on the cross

correlation coefficient is showt in Figure 4.6. The measurm-ents show that

even when the excitation entrgy is restricted to the range 500 c.p.s. to

1,000 c.p.s. the energy is distributed over too vide a frequency band and

S,,***~---~-..-1o-•-
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the response contains too many natural frequencies. The maximum correlation

coefficient is less than 0.2 and the signals quickly decrease to values which

are of the same order of magnitude as the correlator instrument error. Thus

narrow excitation bandwidths of 4.5% wereused in the majority of the measure-

ments. However, when using the 4.5% bandwidth excitation, care had to be

taken to centre the excitation frequency band at the natural frequency of the

mode under consideration, so that the excitation would satisfy the condition

that the spectral density was ineendent of frequency, at least in the

immediate neighbourhood of the natural frequency.

Using 4.5% bandwidth white noise excitation, damping loss factors were

estimated for several modes under zero airflow conditions and the values

were compared with those obtained from the decay of the autocorrelation

coefficient. The cross power spectra were computed using the weighting

function D(T) = 1 (equation 4.25) and the corrections of Clarkson and

Mercer (1965) for the truncation effect were applied to all results. In

all cases the loss factors estimated from the cross-power spectrum were

considerably larger than those estimated from the autocorrelation function

or from discrete frequency excitation. In Figure 4.7, a typical excitation-

response cross-correlation curve and the associated computed cross power

spectrum are shown for the (2-2) mode of the 3.5in x 3.5in x 0.O15in panel.

For the transformation, the cross-correlation curve was truncated at a time

delay of 16 milliseconds. The cross correlation coefficient in Figure 4.7

decays quickly and for time delays greater than 10 milliseconds the values

of the coefficient never exceed the level of the errors inherent in the
correlator. Thus at the longer time delays the correlation coefficients are
probably spurious and the transformation is in error. However, if the

correlation coefficient is truncated at a time delay of 10 milliseconds the
estimated lose factor would require excessive correction with the possibility

of large errors. In the example chosen the estimated loss factor was an order

of mainitude greater than the values estimated from the autocorrelation method

or from the discrete frequency amplitude response curve.

From the zero-airflov investigation the cross spectrum method was found

to be unsuitable for very lightly damped structures and vas not used when
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the airflow was present. Limited experience with specimens having higher

loss factors indicates that the method might be of value in such cases.

4.5.4 Results from Autocorrelation Method

It has been shown theoretically in Section 4.4 that the autocorrelation

technique can be applied only to modes whose natural frequencies are well

separated from the neighbouring peaks so that, when the response signal is

passed through a filter centred at the natural frequency, the filtered signal

contains a negligible contribution from the neighbouring peaks. Further,

the method cannot be used if the peak is small relative to the neighbouring

peaks because there will be a significant contribution from these modes to

the vibration at the natural frequency under consideration. This contribution

cannot be eliminated by filtering. It is obvious from these restrictions

that the method can be applied to only a very limited number of natural

frequencies.

The above conditions were applied to the measured vibration spectra

and several modes were selected for investigation. The appropriate one-third

octave filter was chosen to minimise the effect of the vibration in neighbouring

modes. For each of the modes considered, the shape of the autocorrelation

curve was inspected at a representative measuring condition. When the curve

did not have the shape of a decaying cosine the corresponding modes were

rejected. Thus the modes finally selected satisfied the condition that the

vibration could be adequately represented by a single degree of freedom

system. Figure 4.8(a) shows the autocorrelation curve for a mode (1-1 mode

of the 2.Oin x 4.Oin panel) finally chosen for investigation and it can be

copared with the autocorrelation curve in Figure 4.8(b), for the 2-1 mode of the

2.Oin x 4.Oin panel, vhich is distorted by low frequency modulation. Applying

simpl, .ied arguments to two neighbouring sinusoidal signals at frequencies

f' and f", it can be shown that the resultant autocorrelation function will
ff"4f'

contain components modulated at frequencies F-"- and fjf,-. On this basis

the 1-1 (f 10TO c.p.s.) and 2-1 (f2, 1280 c.p.s.) modes vould provide

low frequency modulation at a frequency of 105 c.p.s. which is comparable to

the modulation frequency of approximately 90 c.p.s, present in Figure 4.8(b).
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Although the full autocorrelation curve was used for sample cases

when checking the validity of the single-degree of freedom assumption,

the full curve is not required for the decay measurements where only the

peak values of the autocorrelation coefficient are of use. The positions

of the peaks were located approximately from the Lissajous figure for
the two correlated signals, when displayed on an oscilloscope, and the

peak values were then found from detailed correlation measurements around

each peak. It was not possible in this method to identify any frequency

drift in the panel vibration and the experimental scatter was expected to

be of a similar order of magnitude (+25%) to that experienced in the

amplitude-phase method for discrete frequency excitation. Thus loss

factor variations of less than +25% of the mean values cannot be considered

as significant.

Damping loss factors for the selected modes were measured for the four

panel positions along the tunnel working section. The results in Figures

4.9 and 4.10 show that the damping is essentially independent of panel

position. This conclusion agrees with the results of a limited number of

measurements using discrete frequency excitation under zero airflow conditions,

and indicates that damping is not affected by boundary layer thickness nor by

panel-tunnel resonances at the panef positions. The results in Figures 4.9
and 4.10 show that the measurements do lie within the predicted limits of

+25% of the mean values.

The effect of airflow on the radiation damping of panels in a duct has

been investigated theoretically by Fahy and Pretlove (1965) who considered

the case of a panel spanning one wall of the duct. The effects of the airflow

were most important at the panel fundamental natural frequency but in the

example shown by the authors, for a panel with an area to duct cross

sectional area ratio of 9, there was little variation of damping with air-

speed, 'or frequencies greater than 500 c.p.s., in the Mach number range

MwO to 0.5. In the measurements of panel response to boundary layer

excitation the panel to duct area ratio was less than 0.34 and the maximum

panel length was only 45% of the duct wall dimension. Thus the results of

Fahy and Pretlove suggest that the airflow in te boundary layer tunnel would
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have a small effect on the experimental panels.

Mean values of the measured loss factor are shown in Table 4. 4 , where

the results for the two flow speeds, U =329ft/sec. and 540ft/sec. are
0

compared with the zero airflow measurements. The loss factors are

associated with modes which are well separated in frequency from neighbouring

modes, except in the case of the (1-2) and (2-1) modes of the 3.5in x 3.5in

panel. By suitable positioning of the measuring probe on panel nodal lines

it was possible to obtain response spectra which had contributions from only

one of the two modes. Thus the loss factors for the two modes could be

estimated. Results for the rectangular panels are shown for two panel

orientations, with the major axis parallel and perpendicular to the flow

direction. Within the experimental accuracy the results show no significant

effect of panel orientation.

The results in Table 4.4 indicate that there is an increase in damping

due to the presence of the airflow, but that there is no general variation

which is applicable to all the panels. In the case of the square panel

the damping is greatest for a flow velocity of 540ft/sec. but the rectangular

panels have maximum damping when Uo=329ft/sec. The measured damping

increases are not very large for the 3.5in x 3.5in panel, being less than

30% of the zero airflow value, and except for the (1-1) mode, the changes

are not much greater for the 4.0in x 2.Oin panel (146%). It should be

noted that in general the experimental errors will increase the apparent

damping so that the mean values in Table 4.4 will tend to overestimate the

true damping. However, very large increases were measured for the 4.Oin x 2.T5in

panel, the two modes (1-1) and (2-1) showing damping factors which are up to

3.25 times larger than the zero airflow values. These large changes are

difficult to exlqlain because the panel dimensions and modal natural

frequencies are similar to the corresponding values for the 3.5in x 3.5in

panel. The mode shoving the largest changes in damping is the (1-1) mode

of the -.Oin x 2.T5in panel, which, as has bcen discussed in Section 4.3.3

and Table 4.2, was very sensitive to the arrangement of the pressure

equalising system. Thus there may be additional effects which contribute

to the changes in damping for this mode, but it was not possible to

identify them.
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Table 4.4

Effect of Airflow on Damping Loss Factor (Mean Values)

Flow Velocity ft/sec. 0 329 540

Panel MODE v(o) v(329) v(540) v2-o

3.5in x 3.5in 1-1 0.00968 0.00798 0.01159 0.82 1.20

1-2 0.00281 0.00318 - 1.13 -

2-1 0.00281 0.00291 0.00356 1.05 1.27

2-2 0.00213 0.00246 0.00264 1.15 1.24

3-1 0.00335 0.00300 - 0.90 -

4.Oin x 2.75in 1-1 0.00431 0.01097 0.01001 2.54 2.32

2-1 0.00338 0.00715 0.00453 2.11 1.34

2.75in x 4.Oin 1-1 0.00431 O.01.O 0.00851 3.25 1.98

1-2 0.00338 0.00708 0.00537 2.09 1.59

4 .Oin x 2.Oin 1-1 0.00813 0.01563 0.00909 1.92 1.12

2-1 .0090o4 0.01315 - 1.46 -

3-1 o.o0W18 0.00585 0.o0487 I.4o 1.16

2.Oin x 4.Oin 1-1 0.00813 0.01063 0.00869 1.31 1.07

1-3 o.oo418 0.0o5o6 0.0oo 1.21 1.01
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The modal damping of the experimental panels has been measured in zero

airflow conditions, using discrete frequency excitation and the amplitude

response method. The response amplitude-phase method was found to be un-

suitable for the experimental conditions. The panel damping was measured

under free field conditions, and under conditions for which one or both of

the faces of the panels were enclosed. In many cases the damping was reduced

by the presence of the enclosure, but in all conditions the damping was light,

with loss factors in the range 0.001T .1 V < 0.012. The change in damping

due to the presence of an enclosure was attributed to the decrease in acoustic

radiation, and hence in acoustic damping, because of the reverberant conditions

in the enclosure. A method was proposed for estimating the experimental

error arising from the presence of off-resonant vibration in multi-degree of

freedom systems, but thenethod was crude and gave only an indication of the

magnitude of error.

In the presence of an airflow, random techniques can be used to measure

modal damping, the choice of method being determined by the available

analysing equipment and the experimental conditions. The damping can be

estimated from the bandwidth of the resonant peaks in the response spectra

if suitable filters are available. Alternatively the loss factor can be

estimated from the excitation-response cross power spectrum, but corrections

for truncation errors will be necessary if the spectrum is obtained by

transformation of the cross correlation coefficient. Both of the above

methods were found to be inaccurate in the experimental conditions of the

present investigation and the autocorrelation decay method was used. This

method can be applied to only a limited number of modes, where the natural

frequencies are well spaced, the damping is light, and the resonant peak is

not small relative to the neighbouring peaks. The results showed a general

increase in modsl damping in the presence of an airflow, the damping for the

square panel being greatest at a flow speed of 5IOtt/sec., whilst the damping

for the rectangular panels was greatest at a flow speed of 329ft/sec. The

largest changes in damping occurred in the (1-1) mode of each panel.
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CHAPTER 5

Measured Response to Boundary Layer Excitation

5.1 Introduction

5.1.1 Method of Presentation of Results

The four panels used in the experimental programme have been described

in Chapter 3. One panel was of square planform but the other three were

rectangular in shape and could be placed in the wall of the tunnel working

section so that the major axis was either parallel or perpendicular to the

direction of the airflow. Thus each rectangular panel could be used effectively

as two panels, one with aspect ratio L1/L 3 greater than unity and one with an

aspect ratio less than unity. For ease of reference, the panels will be

denoted by the planform dimensions, the first dimension quoted being that in

the flow direction. Thus the 4.Oin x 2.Oin panel is placed with the 4.Oinch

sides parallel to the flow direction, and the 2.Oin x 4.Oin panel has the

2.Oinch sides parallel to the flow. The full range of experimental panels

is shown in Table 5.1 in order of increasing aspect ratio.

In the theoretical investigation the mode order (m-n) refers to a mode

having m half-wavelengths in a direction parallel to the airflow and n half-

wavelengths perpendicular to the flow. This notation will be used again and
it should be noted that, for example, the (1-2) mode of the 4.Oin x 2.Oin panel
is physically the same mode as the(2-1) mode of the 2.Oin x 4.Oin panel.

Rectangular Cartesian co-ordinate axes were chosen as shown in Figure 5.1
wit4 the urlisturbed neutral plane of the panel lyiri ;.t the (xi,x 3 ) co-
ordinate plane, and the tunnel airflow in the negative x, direction. A probe
position which was one quarter of the vay along a panel diagonal was chosen
for most of the vibration :-asurements, but supplementary measurements were
made at other positions. When the rectangular panels were used, vibration
measurements were usually made at the same physical positions on the panel
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Dimensions of the Experimental Panels

Panel Planform Dimensions Aspect Ratio
L1,SL 1 / L 3

1 l.Oin x 4.Oin 0.25

2 2.Oin x 4.0in 0.50

3 2.T5in x 4.Oin 0.6875

S3.5in x 3.5in 1.00

5 4.Oin x 2.75in 145•45

6 )•.Oin x 2.Oin 2.00

T7 4.Oin x 1.Oin 4.Oo
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surface for the two aspect ratio cases. Thus, measuring positions were

chosen as shown in Figure 5.1, to minimise the effect of any asymmetry in

the panel vibrational characteristics.

The panel response is expressed directly in terms of the root mean

square (r.m.s) displacement and the displacement power spectral density Gd(f),

or it is expressed in terms of the response to unit excitation when it is

desirable to exclude the effect of the excitation power spectral density.

In the latter case the displacement power spectral density at a frequency f

is divided by the excitation pressure power spectral density for the same

frequency f, to give the ratio Gd(f) /G (f). The power spectral density

functions G (f) and G (f) are the single sided functions (O<f<_- which are
d p

measured in practice (see Section A.3.2).

5.1.2 Errors due to Theoretical Assumptions

The measured panel natural frequencies and mode shapes in Appendix C

indicate that the experimental panels have boundary conditions which are

intermediate between those of simply supported and fully fixed panels, but

which approach the conditions associated with a fully fixed panel. In the

theoretical analysis it has been assumed that the mode shapes could be

represented by those associated with a simply supported panel, although the

measured natural frequencies and modal damping applicable to the fully fixed

panels were used. Before the theoretical and experimental results are

compared, the effect of the above assumption on the displacement Rover

spectral density function can be discussed by comparing theoretical results

for simply supported and fully fixed panels. The theoretical comparison

will include only the effect of the mode shape, and will not include the

natural frequencies associated with simply supported and fully fixed modes

of vibration.

The mode shapes will influence the displacement power spectral density

function in equat'on (2.k5) through three terms: the generalised mass Na

the panel acceptance Ja (w); and the modal displacement #(E) at the position

x considered on the panel. The generalised moss and the acceptance depend

on the integrated effect of the s,,de shape over the panel surface, end their
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influence is independent of the position on the panel. In Section 2.3.3 the

generalised mass for a simply supported panel is shown to be greater than

that for a fully fixed panel, and in equation (2.45) M appears in the

denominator of the displacement power spectral density function. Thus the

use of simply supported mode shapes in the determination of the generalised

mass will reduce the displacement power spectral density function by a factor

of 2.1 for the (1-1) mode, the factor falling to a value of 1.7 for the higher

order modes.

The joint acceptance terms, also, are larger for simply supported mode

shapes than for fully fixed mode shapes, and Bozich (1964) has shown that

for some conditions of acoustic excitation the difference is a factor of 2,

approximately. However, the changes in M and JI (w) will act in opposition

in the response function of equation (2.45), so that the combined effect

should exhibit only a small variation with panel boundary conditions.

The effect of the *(x) term will depend on the location x of the point

of interest, and a comparison between simply supported and fully fixed modes

is available directly from Figures C.2 to C.4. For some positions the simply

supported mode shape will give larger deflections than the fully fixed modes,

whereas the converse will be true at other positions. It is seen that the

choice of mode shape will be important when x is chosen to lie on, or close

to, a nodal line of one of the mode shapes. When the displacement is

estimated for the quarter point of the diagonal, the point of interest lies

on a nodal line of the simply supported modes for which m or n is equal to 4,
and theoretical estimates will predict a zero displacement in these modes.
Use of fully fixed mode shapes would give a non-zero response, which is in

better agreement with experiment (Figure 5.9). For this position on the

panel surface, the term #2(.) for a simply supported panel exceeds that for

a fully fixed panel by a factor of approximately 2.7 for the (1-1) mode,

1.2 for the (2-2) mode, O.4 for the (3-3) mode and 6.6 for the (5-1) mode.

In particular, the results for panels 3 and 5 show a large difference
between the theoretical and measured ,pectral densities in the 5 order

modes.
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From the above discussion it is seen that the effect of mode shape on

the panel displacement power spectral density function arises mainly from

the modal displacement 4a (x) for the position x considered, but an

additional contribution due to the net effect of the acceptance and generalisedI mass terms will be present also.

The mean measured natural frequencies in Table C.2 were used in the

calculation of the theoretical spectra, but in some cases the measured and

predicted resonant peaks are displaced slightly in the frequency domain.

This shift is of little significance because the panel natural frequencies

changed slightly with ambient temperature. Zero airflow damping has been

used in the prediction of the displacement spectra and in the estimation of the

resolution loss due to the finite filter bandwidth, except for the (1-1) and

(1-2) modes of panel 3 and the (1-1) and (2-1) modes of panel 5 where mean

damping values measured in the presence of the airflow were used. A com-

parison of theoretical and measured spectra will show the relative shapes of

the spectra in terms of the relative importance of the modes of vibration,

and will not be concerned with the frequencies of the peaks in the theoretical

and experimental spectra.

The theoretical spectra include data at the panel natural frequencies,

and in some cases at the spectral troughs (Figure 5.8), to show the effect

of including the cross terms in the calculation of the panel response. For

the panels investigated it is seen that the cross terms have a negligible

effect, and they have been excluded from the general comparisons between the

theoretical and measured results.

5.2 Root Mean Square Displacement

5.2.1 Overall Displacement

The determination of the panel overall and modal r.m.s. displacements

at the probe measuring positions is discussed in Appendir D, theoretical and

experimental modal displacements being presented in detail in Tables D.1 to

D.8 for measuring positions at a quarter point on a panel diagonal. The

overall r.m.s. displacements associated with these measuring positions are

shown in Figure 5.2, the experimental values being determined directly from
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the measurements, and the theoretical values by summation over the lower

order modes. Data for the 1.Oin x 4.Oin and 4 .Oin x l.Oin panels have

been omitted because the levels were found to be very low and were affected

by background vibration. It is seen from the figure that in all cases the

predicted displacement exceeds the measured value, but the experimental and

theoretical results show similar variations with the boundary layer thickness.

The largest measured response shown in the results is an r.m.s. displacement

of 1.45 x 10- inch for the square panel (4). This displacement is approxi-

mately 1% of the panel thickness.

In Figure 5.2(a) the theoretical end experimental recults for panel 2

(2.0in x 4.Oin) and panel 6 (4.0.n x 2.Oin) show that at the lower Mach

number, Mo=0.3, the vibration levels are greater in panel 2 than in panel 6,

but the converse is true at the higher Mach number. This effect is present

in the results for panels 3 and 5 in Figure 5.2(b), but it is less marked

because the panel aspect ratios are closer to unity.

5.2.2 Modal Displacement

Modal r.m.s. displacements have bcen measured for the experimental

panels, an approximation to the respunse in the "irdividual modes being

obtained by the use of 2% banzwidth filters in the analysis of the displace-

ment signals. The results are compared in the Tables D.1 to D.8 with

theoretical values pr'dicted by •he method ýihown in Appendix D. Typical

results for panels 2,4 and 6, arl a Mach number Mo 00.3, are shown in

Figures 5.3 and 5.4 where it is seen that, although the theory overestimates

the magnitude of the measured response, it provides a reliable estimate of

the variation of response with boundary. layer thickness. The results show

that there is a general increase in the modal r.m.s. displacement with

boundary layer thickness until a maximum displacement is reached at a

boundary layer thickness which depends on the mode order. Further

increases in the boundary layer thickness will result in a decrease of the

modpl r.m.s. displacement. Inspection of the results shovs that, as the

boundary layer increases in thickness, the modal maxima occur first in the

modes with the highest natural frequencies, and at the low flov velocity.
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Thus the phenomenon can be attributed, at least in part, to the concentration

of excitational energy at lower frequencies as the boundary layer thickness

increases. Figure A.2 shows that, at the lower Mach number, the excitation

spectraldensity at a given frequency in the range 2,000 c.p.s. to 3,000 c.p.s.

reaches a maximum at a boundary layer thickness in the experimental range.

Thus modes with natural frequencies in this range could be expected to have

associated displacement maxima. A more detailed investigation of the

effect of boundary layer thickness will be postponed until Section 5.4, when

the effect of excitation spectral density can be excluded if riecessary.

The presence of a maximum displacement is not indicated in the total

response results in Figure 5.2, except in the case of panel 6, for a flow

speed Mo=0. 3. The variation of the total response with boundary layer

thickness will be determined by the corresponding variation of the dominant

modes. In Figures 5.3 and 5.4 the dominant modes of panels 2 and 4 do not

have a displacement maximum in the range of boundary layer thicknesses

considered, and this is reproduced in the total results in Figure 5.2.

However the results for panel 6 in Figure 5.4 show that the dominant modes

are approaching maximum displacement values at the upper limit of the

boundary layer thickness range considered. This is particularly true for

the experimental results, and the associated total response in Figure 5.2

indicates the presence of a displacement maximum at the thWcke- boundary

layers considered.

5.3 Displacement Spectra

A series of measured responre spectra are shown for penels 2 to 6 in

Figures 5.5 to 5.9 respectively. The meaesirement. were made at a flow

velocity of U u329ft/sec (1o4O.3) and a boundary layer thicinesc 3f

6 a 1.4inches, the probe position being Pt a quar'er rint on the panel
diagonal. The response spectral density is expreise-A ii terns of the
displacement to unit excitation, and the peak val'le'% have be-n c~rrelcted

for resolution loss due to the finite bandwidth of the analysing filters

(Appendix B). The effect of the rilters is negligible except in the
regions very close to the natural frequencies. Tn each figure the measured
spectrum is compared with the corresponding theoretical spectrum estimated
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from equation (2.45), using joint acceptance terms only. The natural

frequencies in the theoretical speetra were taken as the mean values

from the measured spectra and are given in Table C.2.

A comparison of the theoretical and experimental spectra shows that

the shapes are similar, in terms of the relative importance of the normal

modes, but the theory overestimates the peak values and underestimates the

values in the troughs. However, close agreement of the magnitude of the

spectral density is not expected because of the errors and assumptions

present in the experimental and theoretical analysis. In addition to the

errors in the theoretical analysis which are discussed in Section 5.1.2,

experimental errors occur because of the experimental scatter inherent in

random analysis, and because of errors in the measurement of the damping

ratios and in the estimation of the resolution loss.

The best agreement between theory and experiment is found in the results

for panels 2, 4 and 6. In the case of panels 3 and 5 the agreement is good
at the two lowest natural frequencies where damping values measured in the

presence of the airflow were used, but is less good at higher frequencies

where zero airflow damping was used in the calculations.

When the spectra for panels 2 and 3 are compared with the results for

panels 5 and 6, the relative importance of the modes is obvious. The

theoretical and experimental spectra for the 2.Oin x 4.Oin and 2.75in x 4.Oin

panels show that the greatest response at the measuring position occurs in

the (1-1) fundamental mode, but the (2-1) mode is predominant in the

4.0in x 2.75in and 4.Oin x 2.Oin panels. This change in relative magnitude

is more noticeable when comparing the (2-1) and (1-3) modes of panel 3 with

the (1-2) and (3-1) modes of panel 5. These modes have very close natural

frequencies and, because of filter effects, the presence of the secondary

peak is observed only as a distortion in the shape of the measured primary

peak. In Figure 5.6 the response in the (2-1) mode is an order of magnitude

greater than that in the (1-3) mode, but in Figure 5.8 the (3-1) mode peak

is considerably greater than the (1-2) mode peak. Direct comparisons of

spectra for the above four panels have been presented by Wilby (1964) and

Wilby and Richards (1965).
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Response spectra for the l.Oin x 4.Oin and 4.Oin x l.Oin panels are

shown in Figure 5.10 but, because of the high natural frequencies and low

response, little information can be deduced from the figure. Also the

results are influenced by the presence of background vibration. However,

it can be seen that %.ne experimental and theoretical response in the

fundamental mode is much smaller in the case of the 4 .Oin x l.Oin panel

than it is for the l.Oin x 4.Oin panel.

In Figures 5.11 to 5.13 response spectra are presented for panels 3,

4 and 5, with an airflow velocity of 54Oft/sec. The spectra are again

shown in terms of the response to unit excitation so that a comparison of

the results for the two flow speeds in Figures 5.6 to 5.8 and Figures 5.11

to 5.13 will not include the effect of changes in excitation spectral

density. The comparison will show only the effect of the acceptance

curveýs and, for the two lowest frequency modes of the 4 .0in x 2.75in and

2.75in x 4.Oin panels, the effect of modal damping. The agreement between

theory and experiment at a flow speed of 540ft/sec is not as good as at

the lower speed but there is still fairly good agreement in the relative

shapes of the spectra. Figures 5.11 and 5.13 show changes in the relative

magnitudes of the modes which are similar to those observed between

Figures 5.6 and 5.8.

When results for the two airspeeds are compared it is seen that the

theoretical and measured high frequency response increases more rapidly

with air velocity than does the low frequency response. Thus at the

higher speed the fall-off of the response spectra with increasing frequency

is less rapid than at the lower speed. This change in spectrum shape

becomes more obvious when the direct response spectra are compared, as

in Figure 5.14 for panel 5, where changes in excitation spectral density

(see Figure A.2) further emphasise the changes in the shape of the response

spectra. Figure A.2 shows that for the higher flow velocity there is

relatively more excitational energy at the higher frequencies. Further

discussion of the effect of airflow velocity on the panel response at the

natural frequencies is contained in Section 5.5.

The effect of boundary layer thickness on the shape of the response

r spectra is not illustrated in this chapter but spectra have been compared

by Wilby and Richards (1965) for the 3.5in x 3.5in panel. At the lower
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frequencies there is a general increase in the response, due to the change

in the excitation spectral density and in the panel joint acceptance. The

trend can be reversed, however, at the higher frequencies. In the

following section the effect of boundary layer thickness on the modal

response at the panel natural frequencies will be investigated.

5.4 Effect of Boundary Layer Thickness

It has been shown in the previous section that the measured and

predicted spectra are similar in shape, and it is possible now to study

in greater detail the effect of boundary layer thickness on the panel

response. In Appendix D and Section 5.2.2 measured and predicted modal

r.m.s. displacements are presented and the effect of boundary layer thickness

is shown in Figures 5.3 and 5.4. Similar comparisons can be made when the

displacement spectral density at the panel natural frequencies is considered,

and the response can be associated with the excitation power spectral density

and cross correlation functions at the corresponding frequencies. In the

case of the r.m.s. displacement the response can be associated with the same

excitation functions, if it is assumed that the r.m.s. displacement is due

mainly to the response in the neighbourhood of the modal natural frequency.

This assumption was used in the estimation of the r.m.s. displacement from

the displacement spectral density in Section D.2. The choice of r.m.s.

displacement or displacement spectral density as the function of interest

will have little effect on the conclusions to be drawn, but any errors

present in the r-m.s. displacement comparison will be magnified in the

displacement spectral density function. However the latter function can

be related directly to the spectra in Figures 5.5 to 5.14 and, therefore,

has been chosen for investigation. If necessary the effect of flow

velocity and boundary layer thickness on the r.m.s. displacement can be

studied from the data available in Tables D.1 to D.8.

Figure 5.15 shows the measured spectral density 0d(f) at the natural

frequencies of the (1-1), (1-2), (2-1) and (2-2) modes of the 3.Sin x 3.Sin

panel, for four boundary layer thicknesses along the tunnel working section.

The measurements are compared with theoretical curves calculated from

equation (2.45) vhen the cross terms, a*B , are neglected.
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The estimated values exceed the measured values throughout the range of
boundary layer thickness, but the variation of response with boundary

layer thickness is similar in the two cases. The data in the figure

can be compared with data in Figure 5.3 where the same information is

presented in terms of the r.m.s. displacement. The agreement between

experiment and theory in Figure 5.15 i-ppears to be worse than in Figure 5.3

but this is due mainly to the effective squaring of the information

presented in Figure 5.3. For the same reason the effect of boundary

layer thickness on the displacement power spectral density function appears

to be stronger than the effect on the r.m.s. displacement.

Reasons for the discrepancies between theory and experiment have been

discussed in Section 5.1.2, and in future comparisons it will be of interest

to consider only the variation of the response with the various parameters.

To obtain a convenient comparison the measured values for a given mode and
measuring position can be multiplied by an arbitrary factor so that the

experimental points are superposed on the theoretical curve. The factor,

which is the mean ratio of the theoretical power spectral density to the

measured spectral density, will indicate the extent by which the predicted

values exceed the measured results.

On the above basis a comparison of the theoretical and experimental results

is shown in Figures 5.16 to 5.20 for panels 2 to 6, and a flow velocity of

329ft/sec. The results are presented directly in term of the displacement

power spectral density iunction Gd(f), and include the effect of changes in

excitation power spectral density with boundary leyer thickness. The

measurements show a certain mount of experimental scatter but in general

the effect of the boundary layer thickness is predicted well for all panels.
The principal exceptions are the (1-1) modes of panels 5 and 6, where the

measured rate of change or response with boundary loer thickness is greater

than that predicted. Figures 5.21 to 5.23 contain similar data for panels

to 5, and a flow velocity of 54Oft/sec. The experimental scatter is greater
than at the lower speed but the results again show siilar trends for the

m ea ments and estimates. The (1-1) mode of the .Oin x 2.75in panel
exhibits the divergence between theory and experiment which was shown at
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U =329ft/sec., and a similar divergence is observed in the results for the0

(i-i) mode of the 3.5in x 3.5in panel.

The ratio of the predicted to measured displacement power spectral

densities at the panel natural frequencies is shown in Table 5.2, the

measured values having been corrected for resolution loss, and the theoretical

values calculated using zero airflow damping unless otherwise indicated. The

theoretical spectral densities were estimated using joint terms only, but it

has been shown that the error due to this simplification is negligible. For

reasons given earlier, close agreement cannot be expected for the magnitudes of

the theoretical and experimental displacement power spectral densities, and

Table 5.2 indicates the extent of the discrepancy. The results in the table
do not follow a consistent pattern but in 65% of the cases the factor is

less than 5. This result is similar to that of section D.3, that the ratio
of theoretical to measured modal r.m.s. displacement was mainly in the range

1.0 to 2.0. There is close agreement between theory and experiment for the

3.5in x 3.5in panel at a flow velocity of 329ft/sec., but there is a general

increase in the ratio at the higher velocity. A similar trend with velocity

is observed for the 2.75in x 4.Oin panel but not for the 4.Oin x 2.T5in panel.

When damping measured in the presence of the airflow is used for modes (1-1)
•i and (2-1) of panel 5 and modes (1-1) and (1-2) of panel 3, the agreement

between experiment and theory is much closer. Large differences between

predicted and measured results for other modes of panels 3 and 5 may be

influenced by changes in modal damping with airspeed.

4 Considering now the response to unit excitation, experimental and

theoretical results for several modes, and both airflow velocities, are

presented in Figure 5.214 Ior panel 4 and Figure 5.25 for panel 5. The

experimental values are multiplied by the factors obtained from Table 5.2.

The rate of change of response with boundary layer thickness is generally

less than in the previous figures where the rate of change was amplified

by the effect of the excitation power spectral density function. The

experimental scatter has now become more significant, in term of the total

change in response for the boundary layer thickness range considered, but

the measured and predicted results sagin show similar dependencies on

boundary layer thickness.
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In Chapter 2 the longitudinal joint acceptance terms are shown to have

one of two alternative forms, the choice of form being determined by the

value of the Strouhal number .-• When -. 0.37, the excitation longi-jUc "U
tudinal narrow band cross correlation coefficient is independent of the

boundary layer thickness 6 (-r displacement thickness 6*) except indirectly

through the convection velocity Uc (equation (A.16)), and when -< 0.37,
Uc

P is present in the correlation exponential decay term (equation (A.11)).

In Figure 5.26 the regions of validity for the two forms of excitation

correlation function are shown in relation to the modes of panels 4, 5 and 6.
W6*

For a given measuring position, the condition T-= 0.37 is satisfied at
c

the natural frequencies of all the modes shown above the associated horizontal

broken line. The condition U < 0.37 is satisfied at the lowest natural

frequencies of panels 4 and 5 •or all experimental conditions but at higher

frequencies the condition > > 0.37 is satisfied in certain conditions.
Uc

The variation of modal response with boundary layer thickness can now be

investigated with reference to Figure 5.26 and the non-dimensional curves in

Chapter 2. Values of the non-dimensional parameter L1 / , averaged over the

four boundary layer thicknesses in the experimental range, are given in

Table 5.3 for frequencies f - finn The variation of Ll/C with 6 is approxi-

mately ±1.5% about the mean value for the (1-1) mode, increasing to +6%

at the highest natural frequencies considered.

For panel 4, it is seen from Figure 5.26 that at the natural frequencies

of the (1-2) and (2-1) modes w < 0.37 for all the measuring conditions.
Uc

Thus the change in spectral density with boundary layer thickness is a

combination of the change in the longitudinal joint acceptance as shown in

Figures 2.6 and 2.7, and the change in the lateral joint acceptance in

Figure 2.16. Considering the (1-2) mode, the longitudinal joint acceptance

J.(W) increases as 6* increases, when N.o0.5 /Cm 2.45)9 and decreases as

60 increases when N 0 .3 (LI/ . 4.10). In the lateral direction j',(u)
increases by approximately the same amount as 6* increases at the two airspeeds.

Thus the combined effect of J, (W) W jCu) & Jn W) ahove an increase in

response with boundarylayer thickness at the higher speed, and essentialy

no change at the lover speed where the increase in jCn(w) is cancelled by
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the decrease in j E(w). The measurements shcw response variations with

boundary layer thickness which are closely similar to the predicted

variations. In the case of the (3-2) mode, WO < 0.31 at the first
UC

three measuring positions for M =0.5, but only at the first position for

M =0.3. From Figures 2.8 and 2.13, j• (c) and j'(w) both increase with

6* at M=O,5 (Lj/ = 5.10). When ,o0=0.3 (Li/C= 8.66) j' (w) shows an

increase with 6P but, from Figure 2.1 and mwr3, the change in Uc with 6:

results in a decrease of j (w) which exceeds the increase in j'(w). Thus

the combined effect results in an increase in modal responne with boundary

layer thickness at a flow speed of 540ft/sec., but there is a decrease in

response as the boundary layer thickness increases at a flow speed of
34ft/sec. Again, the variation in the measured results is in agreement

with the predictions.

In Figure 5.25, containing the results for panel 5, the natural

frequency of mode (1-3) satisfies the clndition WO > 0.37 for most measuring
U

conditions, and the theoretical and experLme~tal results indicate that the

response has a similar dependence on boundary layer thickness at both airflow

velocities. From Figures 2.1 and 2.7 it is seen that j (w) decreases as

6S increases, and j,' (w) increases with 6, the changes &T each Mach number

being approximately the same.

Arguments similar to the above can be repeated for other modes and in
06*all cases, regardless of whether > > 0.37 or3• h theo.. .tsU'C -- uT.•f te theory prdcts

response variations with boundary layer thickness which are similar to the

measured changes.

5.5 Effect of Flow Velocity

The flow velocity will influence the panel response throlgh the pressure

power spectral density function, the pressure narrow band correlation length -

and the narrow band cross correlation decay. When an increase in flow-

velocity is achieved for constant dynamic pressure, the total enew• of

excitation will remain constant but there will be a redistribution of energy

in the frequency domain, the distribution being made over a wider frequency

range as is the case when the boundary layer thickness is dtcrease. However,
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if, as is generally true, there is an increase in dynamic pressure

associated with the velocity increase, then there will also be a general

rise in the pressure power spectral density.

The pressure narrow band correlation length is directly proportional

to the convection velocity and so will increase with the free stream velocity.

This implies that, when the flow velocity is increased, the excitation wave-

length which is associated with a frequency w by a fixed observer must

increase also. Thus at a givez., instant in time the pressure field is

correlated over a larger area for the higher flow velocity. Also the

increase in flow velocity will de.-rease the cross correlation decay rate

in the Strouhal number regions where this is inversely proportional to the

convection velocity.

The response of the experimental panels to boundary layer excitation was

measured for two flow velocities, Uo=329ft/sec. and 540 ft/sec. The

measurements were restricted to these two velocities by the design of the

boundary layer wind tunnel and al;hough some conclusions can be drawn from

the experimental results, it is not possible to predict with confidence

the general trend of the measurements with flow velocity. A change in flow

velocity can affect the panel response in several ways. The excitation

power spectral density at a given frequency will change with flow velocity,

and the change in the pressure field convection velocity will affect the

excitation correlation function and the acceptance terms. The change in

flow velocity may also affect the panel damping.

When the measlired displacement spectra were compared in Figure 5.14

it was shown that there was a general increase in vibration when the flow

velocity was !ncreased. If the vibration is expressed in terms of the

response to unit excitadion, Figures 5.24 and 5.25, there is still an in-

crease with flow velocity, except for certain modes or boundary layer

thickness ranges. The preceding discussion has shown, also, that the

theory overestimates the magnitude of the panel response, and that the

extent of the overestimation, shown in Table 5.2 is different at the two

Mach numbers. From table 5.2 it cia be deduced that the variation of

response with flow velocity, predicted from the theoretical analysis,
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differs from that measured in practice.

In Figures 5.27 to 5.29 the displacement power spectral density at

the natural frequencies of several panel modes is expressed as the ratio

of the response at Mach number Mo=0.5 to the response at M 00.3. Thus

a ratio greater than unity indicates an increase in the displacement

power spectral density function Gd(f) with velocity, the effect of a

change in excitation power spectral density being included. The results

in Figures 5.27 to 5.29 show that, theoretically and experimentally, the

ratio, and hence the effect of the f'low velocity, increases with mode

orcer. For example, the measured response ratios for panel 4 are

approximately 1.2 in the (1-1) mode, 2.5 in the (2-2) mode and 120 in

the (3-3) mode, the theoretical values being 4.0, 5.5 and 40 respectively.

One reason for this change with mode order or frequency is the variation,

particularly at the higher frequencies, of the excitation power spectral

density function with velocity. This is shown in Figure A.2.

The form of presentation used in Figures 5.27 to 5.29 is very

susceptible to experimental error, the error in the measurements being

the combined error of the results at the two Mach numbers. Thus the

scatter in the experimental results in the three figures is large.

"Average" curves have been drawn through the measured data, the curves

being based on the theoretical results multiplied by the corresponding

factors in Table 5.2. The figures do not show very good agreement between

the predicted and measured variation with Mach number. This may be due

partly to changes in panel damping when the airflow velocity changes. In
the calculation of the response, zero airflow damping was assumed for all
the modes except the (1-1) and (2-1) modes of the 4.Oin x 2.75in panel

and the (1-1) and (1-2) modes of the 2.75in x 4.Oin panel. In the

measurement of the modal damping there was experimental scatter of

approximately ±25$ and changes of this order with Mach number were not

considered significant. However, such changes result in errors of +60%

in the displacement power spectral density, errors which are of a similar

magnitude to the differences between theory and experiment shown for

several modes in Figures 5-2Tto 5.29.
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In addition to the possibility of errors of the above nature, there

appears to be a general divergence of results as the natural frequency

increases. At low natural frequencies the theory predicts a greater

change with Mach number than is measured, whilst the converse is true at

higher natural frequencies. Thus the measured change in spectrum shape

with flow velocity, illustrated in Figure 5.14, is more pronounced than

would be predicted. From the available data it is possible to estimate the

approximate frequency below which the theory overestimates the vibration

and above which the theory underestimates the vibration. The results

indicate that the frequency boundary decreases as the panel aspect ratio

increases, the frequency being, approximately, 2,700 c.p.s. for panel 3,

1,900 c.p.s. for panel 4, and 1,500 c.p.s. for panel 5. Recently,

Maestrello (1966) has published experimental and theoretical data for a

panel of aspect ratio 5.54, and for the modes shown the experimental

results have a much larger variation with Mach number than do the theoretical

results. The panel aspect ratio is approximately four times larger than

that for panel 5, so that the present resul-s and those of Maestrello are

not inconsistent.

5.6 Angle of Convection

The effect of the angle of convection of the pressure field has been

discussed theoretically in Chapter 2 and it was shown that, for a given

value of LI/C, the displacement spectral density in certain modes would be

higher at angles in the range 00 <6900 than at the limiting angles 0.00 and

900. Thus, vibration measurements were carried out on the 4.Oin x 2.75in

panel, for a flow velocity of 329 ft/sec., a boundary layer thickness of

1.40 inches, and a series of angles of inclination of the major axis to the

direction of flow in the boundary layer tunnel. The results are shown in

Figure 5.30, where they have been multiplied by arbitrary factors to provide

convenient comparisons with the predicted variation with angle of convection,

the angle 0=00 indicating that the flow is parallel to the panel major axis.

The theoretical curves were calculated from equations (2.93), with
&1 0.1 and aI 0.7U5 , and are shown in terms of the panel joint
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acceptance. The values of a, and a 3 used in the calculations assume that

the condition 6 > 0.37 is valid for all the modes, and that the simplified

form of the lateral cross correlation coefficierit is valid also. The
errors arising from these assumptions should not be large for the conditions

considered. From Figure 5.26 it is seen that for all modes of panel 5,

except the (1-1) and (2-1) modes, w- > 0.37 at the panel position chosen.
*c

In the lateral direction the non-dimensional parameters have to be considered

in greater detail but it can be shown from Figures 2.16 and 2.17 that the

differences in joint acceptance terms for the simplified and complete forms

of the excitation correlation coefficient are small.

In general Figure 5.30 shows that predicted and measured spectral

densities have a similar dependency on the angle of convection of the

pressure field. Modes (1-1), (2-1), (2-2) and (3-1) have the largest

response at either e=o° or 900. Modes (4-1) and (4-2), however, have a

maximum value at an intermediate value of e. In the case of the (4-1)

mode, the maximum of the experimental results occurs at a much higher angle

than predicted, but inspection of the non-dimensional curves shows that in

this mode and for values of in the neighbourhood of the value considered

small changes of LI/C can produce large changes in the angle for maximum

response. It is noted however that the estimated and measured results differ

in one aspect. For modes with order nal along the minor axis the theory

predicts a larger variation of response with e than that shown in the

measurements, whilst for modes with n=2 the converse is true.

5.7 Effect of Static Pressure Differential

Under normal operating conditions the static pressure in the boundary

layer wind tunnel working section is below atmospheric pressure, but a
pressure equalising system, described in Chapter 3, was used to balance
the pressure across the experimental panels. However, conditions in the

equalising box could be maintained at any desired pressure between the
limiting values of atmospheric and tunnel pressure. Thus the panel
vibration could be measured over a range of static pressure differentials.

When a panel is subjected to a static pressure differential there is an

associated increase in the effective stiffness of the system which can
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affect the panel response in three ways. For any loading distribution,

there will be an increase in panel stiffness which will decrease the

panel deflection to a given load. In addition, when the response

spectrum is considered, there will be changes in spectrum shape due to

the increase in the panel natural frequencies. When the excitation

spectral density changes with frequency, the excitation and response at

a natural frequency will vary with the natural frequency. Also, when

the excitation is randomly distributed in space, as in the case of a

turbulent boundary layer pressure field, and the static pressure differential

is altered, there will be changes on the acceptance terms at the natural

frequencies. It is possible to separate these three effects in the

analysis of the experimental results.

The effect of static pressure differential Ap on the response spectra

for two panels is shown in Figure 5.31 and 5.32 for a Mach number of 0.5

and a boundary layer thickness of 0.43 inch. The spectra are shown for

the limiting values of the pressure differential, the maximum value at the

Mach number being approximately 2.4lb/in2 • No corrections have been

applied for resolution loss. The increases of the natural frequencies

with pressure differential are clearly shown, and there is a general

decrease in the displacement power spectral density.

The variation of the natural frequencies with the pressure differential

is shown in Figures 5.33 and 5.34 for the two panels, the frequencies for

the 3.5in x 3.5in panel being measured at two panel positions in the tunnel

working section. Within the pressure differential range shown there is a

linear increase of the natural frequency of each mode with pressure

differential, the rate of change being greatest for the lowest order modes.

The 3.5in x 3.5in panel has a fequency rate of change of 140 c.p.s/lb/in2

for the (1-1) mode, decreasing to a rate of 50 c.p.s./lb/inZ for the (3-3)

mode.

The experimentally determined Oatural frequencies in Figures 5.33 and

5.34 can be used to predict the effect of a static pressure differential

on the random vibration of the-panels. The response was calculated from

equation (2.45), in terms of the displacement for unit excitation so that

the effect of the excitation spectral density could be eliminated. It
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was assumed that the cross terms in equation (2.45) could be neglected,

and that the damping was constant for each mode. This latter assumption

may be invalid in certain cases, for example for the (i-I) mode of the
4 .Oin x 2,75in panel, where the effect of the pressure equalising system

on the damping of the panel may vary significantly with frequency in the

neighbourhood of an acoustic resonance in the system. The variation of

the panel displacement power spectral density with pressure differential

is shown in Figures 5.35 and 5.36 at the natural frequencies of several

modes of the panels. To provide a comparison between the theoretical

and experimental values, the measured results have again been multiplied

by factors as in previous comparisons. It is seen that in some cases

there is a fairly large scatter in the experimental values, but thid may be

due partly to changes in modal damping discussed above. In general the

predicted and measured values show similar dependencies on the static

pressure differential, the important exceptions being the fundamental (1-1)

modes of the panels where the predicted rate of change of spectral density

is greater than the measured value.

Figures 5.35 and 5.36 contain also a series of curves which show the
change in panel vibration under the a~sumption that the joint acceptance

remains constant. The curves represent the change in spectral density

due only to a change in panel stiffness, the displacement power spectral

density at the natural frequency being inversely proportional to the fourth

power of the natural frequency. In most cases the differences between the

curves for variable and constant joint acceptance terms are small and

less than the experimental scatter, but for the previously noted exceptions

of the (1-1) modes, the curves for constant joint acceptance give the better

approximation to the measured rate of change of spectral density.

The changes in the joint acceptance terms can be studied by reference

to the appropriate general curves in Chapter 2. When the pressure

differential increases, the parameter L /mn, where Cm is the excitation

correlation length associated with the (m-n) modal natural frequency, will

increase at a rate proportional to the change in the natural frequency.
LThe values of L/Cm for apO are given in Table 5.3. Taking the (1-1)
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1. 1 and (2-2) modes of the 3.5in x 3.5in panel as an example, it is seen from

Figures 5.26 that the condition T- < 0.37 is satisfied at all pressure
Uc

differentials. From Figures 2.2 and 2.16, the longitudinal joint

acceptance j1,1 (w) and the lateral joint acceptance ji 1 (w) decrease

in value as Ap increases. Thus the total predicted change of displacement

power spectral density with pressure differential is greater than that due

to a stiffness change only. This is shown by the corresponding curves

in Figure 5.35. In the case of the (2-2) mode, j (w) shows a decrease
292

as the pressure differential increases (Figure 2.3) but j, 2 (w) shows a

larger increase, the product j2, 2 (w).j•, 2 (w) being greater than unity.

Thus the combined effect of the joint acceptance and stiffness terms gives

a rate of change of spectral density which is less than that predicted on

a stiffness basis alone. However, for the pressure differential range

available and for the modes investigated, the changes in the panel joint

acceptance are small and the spectraldensity changes depend mainly on the

effective stiffness of the panel. In some early experiments, Bull, Wilby

and Blackman (1963), it was shown that the static pressure differential

had a significant effect on a panel of 0.005 inch thickness but the panel

was damaged before the measurements could be concluded.

5.8 General Discussion

In the comparison of theoretical and experimental results it was seen
that the theory overestimates the magnitude of the vibration, for reasons

already stated, but predicts with reasonable accuracy the variation of the

response with the parameters considered. However, there are one or two

exceptions to the general rule, and these occur mainly at lou mode orders.

In particular the (1-1) modes are found to experience the greatest divergence

betveen theory and experiment. This is not unexpected because the errors

due to the assumed mode shape will be most significant in the (1-1) mode.

It has been assumed that the difference between the joint acceptance terms

for si8ply supported and fully fixed modes remains constant when the

excitation parameters are varied, but this may not be valid for the low

order modes.
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Errors may arise because of inadequacies in the representation of

the excitation pressure field. The response in the (i-i) mode will

depend, more than in any other mode, on the excitation cross correlation

measurements for large separation distances and low values of WC, ranges

where the experimental data is not very reliable. Further the assumption

for separability of the excitation narrow band cross correlation coefficient

in the x1 and x 3 directions,

is not well substantiated in the low frequency range. However, in spite

of the possible sources of error, the theory gives a good approximation of

the response variation in the fundamental modes.

The divergence between theory and experiment is more difficult to

Sexplain when considering the effect of flow velocity. In this case the

most important change in the excitation cross correlation coefficient

will probably be that associated with the correlation length C, which is
directly proportional to the convection velocity. Inspection of the

results suggests that the theory tends to overestimate the effect of flow

velocity when L1/• is in the neighbourhood of the coincidence value but

underestimates the effect when L1/• is much greater than 2m, that is when

the convection velocity is well below that required for coincidence in the

mode considered. Unfortunately the limited amount of data prevents this

explanation from being presented with much confidence, but the discrepancy

may be due to the different shapes of the joint acceptance curves for

simply supported and fully fixed modes.

5.9 Summary

The vibration of the experimental panels has been measured, in general

at a quarter point on a diagonal, and under all the experimental conditions

the total r.m.s. displacement at the measuring point did not exceed 1$ of

the panel thickness. After making allovances for the position on the panel

surface and for the possible peak to r.m.s. displacement ratio, it could be

assumed that the vibration was essentially linear. Total and modal root
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mean square displacements show that the theory overestimates the response

at all boundary layer thicknesses and flow velocities, but predicts quite

accurately the variation of the response with boundary layer thickness.

Spectral analysis of the measurements, in the frequency range

300 - 3,000 c.p.s., showed that the measured and predicted displacement

power spectra were similar in shape, although the predictions over-

estimated the spectral density at the panel natural frequencies. This

difference is explained partly by the assumption of simply supported

mode shapes in the theoretical analysis, but close agreement is not

expected in random vibration investigations. The theoreticalzesults

predict with reasonable accuracy the relative importance of the modes,

the fundamental mode being the most important for panels with aspect

ratio less than unity and, at the diagonal quarter point position, the

mode of order (2-1) being predominant for panels with aspect ratio equal

to or greater than unity.

Considering the panel response at the panel natural frequencies,

the measured variation of displacement power spectral density with boundary

layer thickness was predicted closely by the theory. In general the

response increases with boundary layer thickness for the experimental

conditions, the change being due partly to the increase in excitation

power spectral density for the frequency range of interest, and partly to

the change in the excitation correlation pattern. In the higher order

modes, a response maximn is reached at the boundary layer thickness at

which the excitation spectral density, for the frequency associated with

the mode, reaches a maximum. Further increases in the boundary layer

thickness cause a decrease in the modal response. When the effect of

the excitation spectral density was eliminated it was bund that the change

in the excitation correlation pattern could produce either an increase or

a decrease in the panel displacement power spectral density function for

unit excitation, the rate of change of response being determined by the

values of the non-dimensional parameters L , L3  and . Thus some

modes shoved an increase in 0d(f)/G (f) with boundary layer thickness at

one Mach number and a decrease at the other Mach number. In all cases
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the rate of change of response to unit excitation with boundary layer thick-
ness were small, the estimated changes for the experimental conditions being

less than + 3dB for a two-fold increase in boundary layer thickness.

The response of the panels increased when the airflow velocity was

increased from 329ft/sec to 540ft/sec. Theoretically it was shown that

the change was due to an increase in the excitation power spectral density

and a change in the excitation correlation pattern. Considering the response

to unit excitation at the panel natural frequencies, measured and predicted

results showed an increase in response with Mach number for the majority

of the modes. However, there was a marked difference between the experi-

mental and theoretical results, because the theory predicted larger changes

with Mach number than those measured for the lower order modes, and smaller

changes than those measured for the higher order modes. Tentative explanations

of this discrepancy have been proposed but it was not possible to extend the

investigation because of the limited performance of the wind tunnel.

It has been shown theoretically in Chapter 2, using a simplified form

of the excitation and correlation function, that the response in certain

modes would be a maximum when the direction of convection 0 of the presure

field had a value in the range 0o<e<90°, whilst other modes would have a

maximum response at e-O° or 90°. This has been confirmed by experiment at

a Mach number of 0.3, the direction of convection being changed by rotation

of the experimental panel. Thus the orientation of a structure relative

to the flow direction may be of importance in determining the response in

certain frequency ranges.
The majority of the panel vibration, measurements were made in the

absence of a static pressure differential across the panel. When a static

pressure differential, to a maximum of 2.4lb/in2 , was introduced there was

an increase in the panel natural frequencies and a decrease in the displace-

ment power spectral density. It was shown that, for the experimental

conditions, the change in panel response was due mainly to the change in

effective stiffness of the structure, the changes in natural frequency

causing only small changes in the associated excitation cross correlation
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functions. However, when larger pressure differentials, or structures

with lower basic stiffness, are considered, changes in the joint

acceptance at the natural frequencies may become significant.

II
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CHAPTER6

Measured Response to Acoustic Excitation

6.1 Introduction

When the vibration of large scale structurea is being investigated
it is often not possible to expose more than a small area of structure to

turbulent boundary layer excitation. Thus alternative forms of random

excitation are used, and it is necessary to be able to extrapolate the

experimental results to include the case of boundary layer excitation.

The experimental panels used in the present investigation could be exposed

to random acoustic excitation in the form of grazing incidence plane waves

in a siren tunnel, or inclined plane waves in the far field of a smll cold

air jet, and the results could be compared with those for boundary layer

excitation. Initial measurements, presented by Bull, Wilby and

Blackman (1963), shoved that the responses to siren and air jet excitation

were similar, and only siren excitation was used in later measurements.

6.2 Root Mean Square Displacement

The response of the panels to random acoustic excitation was measured

when the specimens were placed in the siren tunnel. The panels were

positioned so that the direction of propagation of the plane waves was in

the negative x direction, and the vibration was measured at the positions

on the panel surface which were used in the bounlary layer measurements.

The panel total r.m.e. displacements at the measuring positions are shown

in Table 6.1. Comparison with the results in Figure 5.2 shows that the

vibration ia greater than that due to boundary layer excitation, due partly

to the increase in the excitation power spectral density at the lower

frequencies, shown in Figure. A.2 and A.9. The mimum r.a.s. displasce nt

(5.8 x 10 'inch) again occurs in the 3.5 inches square panel, and is

approximately 4% of the panel thickness. The vibration should be linear

even for the peak displacements and no non-linear vibration was observed

on the monitoring oscilloscope.
• 1 -
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Table 6.1

Total Root Mean Square Displacement at

the Probe Measuring Position

(Siren Excitation)

•: Measuring Posit ion

S~r.m.s.
Panel DisplacementX x!X3 (inch)

_(inches) (inches)

3.5in x 3.5in 0.88 0.88 5.8 x 10-4

4.Oin x 2.75in 1.00 1.375 5.5 x i0-4

1.00 0.688 3.2 x 10-4

2.75in x 4.Oin 0.688 3.00 3.0 x 10-4

4.Oin x 2.Oin 1.00 i.00 6.7 x 10-5

1.00 0.50 5.4 x lO-5

2.0in x 4.Oin 0.50 3,00 4.5 x 10-5

i
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6.3 Displacement Spectra

Measured response spectra for panels 2 to 6 are shown in Figures 6.1

to 6.5. The spectra are presented ior the frequency range to 3,000 c.p.s.

used in the boundary layer measurements but, as discussed in Section A.4,

the excitation in the frequency range above (approximately) 1,100 c.p.s. is

a poor representation of grazing incidence plane waves propagating in a

direction parallel to the tunnel axis. Thus experimental results in the

frequency range above 1,100 c.p.s. should be treated with reserve because

the excitation correlation function deviates from the ideal form. Because

of this upper limit on the frequency range the useful information is

restricted to a small number of low order modes. The measured spectra

have been corrected for loss of resolution at the natural frequencies of

the low order modes, using the method of Appendix B.

Panel displacement spectra have been calculated, from the theoretical

analysis in Section 2.5, and they are shown in Figures 6.1 to 6.5 for

comparison %ith the measurements. The spectra were calculated on the

assumption that the cross terms could be neglected, but the combined

effect of the joint and cross terms is shown at the panel natural frequencies.

The cross terms are seen to have a very small effect on the estimated

response but the contribution is greater than that for boundary layer

excitation. In Figure 6.4 the effect of the cross terms is shown at two

of the troughs in the estimated spectrum. At these frequencies the cross

terms have a greater effect on the spectrum than at the natural frequencies

and the correction is much larger than was shown in Figure. 5.8 for boundary

layer excitation. The reason for the difference is due to chauges in the

joint terms rather than in the cross teims. Under siren excitation the

response in the (3-1) mode, estimated from the joint term contribution only,

is mall because LI/C is close to a value associated with a joint acceptance

minimum. Thus the cross term contribution has a larger value relative to

the joint terms than it does in the boumdary layer case when the joint term

contribution is much larger.

Because of the assuwaption of unit correlation in the lateral direction,

the estimated response is sero fcr all modes (s-n) vhere n is even. These
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modes do appear in the measured spectra and their presence indicates the

divergence between the ideal and the actual lateral correlation functions,

or the existence of slight asymmetry in the panel mode shapes. At high

frequencies where the excitation does not conform to the ideal model, the

differences between the theoretical and experimental spectra are large but

at low frequencies the measured response in the (1-2) modes of panels 2 and

3 does not show a large deviation from the theoretical spectre.. However,

there is a large difference between theory and experiment in the vibration

of the (1-2) mode of the 3.5in x 315in panel. The natural frequencies of

the (1-2) and (2-1) modes of the square panel are close together and modal

interaction might be expected, but this was not observed in the discrete

frequency measurements presented in Appendix C. Thus the presence of the

measured response in the (1-2) mode must be due to differences between the

actual and assumed lateral correlation functions for the excitation field,

and to slight irregularities in the panel mode shape.

Apart from the above exceptions when n is even, the predicted spectral
density exceeds the measured value, as was found for boundary layer

excitation. The ratio of the estimated spectral density to the measured

spectral density is shown in Table 6.2 for the modes of interest. The

values of the ratio are similar to those for boundary layer excitation and

they do not show a continuation of the apparent increase of the ratio with

flow or convection velocity which was observed in the results in Table 5.2.

The change from the boundary layer to acoustic excitation results in an

increase in convection velocity by a factor of approximately 2.5.

The results in Figures 6.1 to 6.5 are presented in terms of the

response to unit excitation so the spectra can be compared directly with

the response spectra for boundary layer excitation contained in Figures

5.5 to 5.13, without the necessity of correcting for differences in

excitation spectral density. The spectra show one obvious difference

between the response to boundary layer excitation and the response to

acoustic excitation. The displacement spectra for acoustic excitation

are dominated by the vibration in the fundamental (1-1) mode, whereas at

the corresponding positions on the panels, the boundary layer induced
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Table 6.2

Ratio of Theoretical to Experimental

Displacement Power Spectral Density

(Siren Excitation)

Panel Mode Order Theoretical GA f)
Pael(m-n) Measured Gd(f)

3.5in x 3.5in 1-1 3.4

2-1 2.1

4.Oin x 2.75in 1-1 2.9

2-1 8.3

3-1 0.5

2.75in x 4.Oin 1-1 4.o

2-1 5.8

4.Oin x 2.Oin 1-1 1.5

2-1 11.5

2.Oin x 4.Oin 1-1 1.7
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vibration shows that the response of some of the higher order modes is of

a similarmagnitude to that of the (i-i) mode. This is due partly to the

low or zero response to the acoustic field in the low frequency (1-2) and

(2-2) modes, particularly in the response spectra for the 2.Oin x 4 .Oin and

2.75in x 4.Oin panels, but it is due also to changes in the relative

magnitudes of the acceptances of the other modes.

The relative importance of the modes for which n is odd depends mainly

on the joint acceptance terms, and the effect on these terms of the change

from boundary layer to acoustic excitation can be estimated from the non-

dimensional curves in Chapter 2. If, as in the present investigation, the

turbulent boundary layer is associated with subsonic flow, there will be

an increase in convection velocity at a given frequency if acoustic

excitation is substituted for the boundary layer. There will be a

corresponding decrease in the non-dimensional parameter L1 /m ( hL..V)mn UC

with associated changes in the joint acceptance. Also there will be a

change in the exponential decay rate of the pressure narrow band cross

correlation coefficient and, from Figures 2.2 to 2.5, this can have a very

strong effect on the joint acceptance. The influence of the boundary layer

thickness on the response to boundary layer excitation has to be considered

but the effect will probably be less important than the first two changes.

Values of L/mn for the lower order modes are shown in Table 6.3 and

can be compared with the corresponding values in Table 5.3 for the boundary

layer excitation, the values for acoustic excitation being approximately

0.4 times the values at M 00.5 in the boundary layer case. In the (1-1) mode
L1/;mn has values less than unity for all panels exposed to the acoustic

field and there will be an increase in the vibration in this mode for any of

the experimental panels when the convection velocity increases due to the

change from boundary layer to acoustic excitation. In the (2-1) mode,
L1/4 changes from values in the range 2.0 to 4.0 for the boundary layer

to values of 1.0 to 1.6 for the acoustic excitation. Thus from Figures 2.3

and 2.7 the longitudinal joint acceptance for acoustic excitation is less

than in the boundary layer case. These variations in the joint acceptance

explain the spectrum change from a shape in which the (1-1) and (2-1) modes

K --- -



Table 6.3

Value of Non-Dimensional Panel Length at

Natural Frequencies.

(Siren Excitation)

Mode Order LPanel (m-n)

3.5in x 3.5in 1-1 0.53

2-1 1.03

1-3 1.12

3-1 1.69 I
2-3 2.07

4.Oin x 2.75in 1-1 0.68
2-1 1.01

3-1 1.63

2.75in x 4.Oin 1-1 O.T7

2-1 1.09

1-3 1.05
2-3 1.68

4.Oin x 2.Oin 1-1 1.30
2-1 1.54

3-1 2.10

M.in x 4.oin 1-1 o.65
1-3 1.65
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are of similar importance for boundary layer excitation to one in which the

(i-i) mode is predominant, under acoustic excitation. The extent of the

change will depend on the value of L 1M for the modes considered. If

the natural frequency of the (1-1) mode, or the panel length, is large so

that is in the neighbourhood of a zero of the joint acceptance i1 ,(w)

(when l=O) then the relative effects of the boundary layer and acoustic

pressure fields on the panel vibration will differ from those associated

with the experimental panels.

Figures 2.2 to 2.5 can be used to estimate the effect, on panel response,

of deviations of the longitudinal excitation cross correlation coefficient

from the ideal of an undamped cosine. From Table 6.3 and Figures 2.2 and 2.3

it is seen that variations of ca will have a negligible effect on the (1-1),

(1-3), (2-1) and (2-3) modes shown in the table, but from Figure 2.4 there

will be a significant effect on the (3-1) modes. In the latter case the

values of Ll/m lie in the neighbourhood of a zero of the longitudinal
mn

joint acceptance when c1=O and the theory will underestimate the vibration

in the mode, particularly for the 4.Oin x 2.Oin panel where the value of

mn
Ll•nis very close to the zero condition. In Figures 6.3 to 6.5 it is

seen that the vibration in the (3-1) mode is underestimated by the theory,

and part of the discrepancy can now be attributed to the deviation of the

pressure field from the ideal. In the lateral direction it is possible

that small deviations of the pressure cross correlation coefficient from the

ideal value of unity will have a small effect, except in the case of modes

with n even, when the response will be sensitive to changes in the pressure

correlation function. However changes in the pressure correlation decay

rate will make only a small contribution to the difference between theory

and experiment for the modes in Table 6.2.

6.4 Annle of Convection

Because of the limited useful frequency range, an investigation into

the effects of the angle of aonvection on the panel response does not have

a great value. However, the response of the (1-1) and (2-1) modes of the

4.Oin x 2.75in panel was measured for a range of values of the angle of

convection 0, 0 <_0 , and the results are shown in Figure 6.6, the
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displacement spectral density for 6=0o0 being used as a datum. The angle

0=0 indicates that the major axis of the panel is parallel to the direction
of convection.

The theoretical displacement power spectral density, calculated from

equation (2.93) at the panel natural frequencies, is shown in Figure 6.6

and the curves closely predict the measured variation with angle of convection.

As in the case of boundary layer excitation (Figure 5.30), convection

direction has only a small effect on the vibration in the (1-1) mode. The

response in the (2-1) mode varies markedly with angle of convection for

acoustic excitation, the displacement being theoretically zero when 61900,

and the variation is considerably larger than for boundary '1aer excitation.

6.5 Summary

To provide a comparison with the boundary layer induced vibration, the

experimental panels were exposed to grazing incidence random acoustic plane

waves. Measured overall root mean square displacements were greater than
those for the boundary layer excitation, but, at the quarter point along a

panel diagonal, they did not exceed 4% of the panel thickness. The

results showed good agreement with the estimated spectra in the frequency

range below 1,100 c.p.s., the range in which the experimental conditions

satisfied the theoretical assumptions of freely propagating acoustic plane

waves, but showed a wide divergence at higher frequencies. This divergence

could be explained in part by modification of the theoretical assumptions.

The vibration occurred predominantly in the (1-1) mode, the measured

~ displacement power spectral density for unit excitation at the natural

frequency of the mode being greater, as predicted, than that for boundary

layer excitation. There was negligible measured response in the modes of

order (m-n) where n is even, the theoretical response in these modes being

zero. Exceptions arose at the higher frequencies when the excitation

deviated from the ideal. Limited measurements showed that the effect of the

direction of convection on the modal response could be closely predicted.
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CHAPTER 7

Conclusions

The response of simple structures to random excitation, in the form

of a naturally developed turbulent boundary layer or acoustic plane waves,

has been discussed on the basis of theoretical and experimental results.

Summaries of the detailed discussion have been given at the end of each

chapter and it is possible now to draw several general conclusions.

(1) Under assumptions of separability of the excitation and response

functions in the co-ordinate directions, the joint acceptance can

be separated into longitudinal and lateral components. In general

the longitudinal acceptance is more important than the lateral

acceptance, which is a slowly varying function. The lateral

acceptance depends on the boundary layer pressure lateral correlation

function which often is not known with confidence. However, in

many cases it will be sufficiently accurate to use only a simplified

form of the correlation function.

(2) For boundary layer excitation, the response cross terms due to

the statistical coupling of the normal modes, are negligible when

the damping is light. In any case, when the pressure field is

convected along the longitudinal axis of the structure, the cross

terms for modes (m-n) and (r-s) are zero when n+s is odd.

When the structure is exposed to acoustic excitation and the damping

is light, the cross terms are negligible at the natural frequencies but

may be significant off-resonance, at spectral troughs close to the

natural frequencies of modes for which the joint acceptance is small.

However, the off-resonance case is of little importance in practice.
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(3) When the response of fully fixed panels to random excitation

is estimated using the simplifying assumptions of simply supported

mode shapes in the analysis, the predictions exceed the measured

values. However in most cases the difference is similar to that

expected due to the assumptions. The theory predicts reasonably

accurately the variations of the response with boundary layer

thickness, static pressure differential, angle of convection and

aspect ratio, but discrepancies can occur in the (1-1) mode, which

is the mode most likely to be affected by assumptions concerning

the edge conditions of the panel. When predicting the effect of

flow velocity the theory is less reliable because it overestimates

the effect in the neighbourhood of coincidence and underestimates

the effect away from coincidence.

(4) The boundary layer thickness affects the excitation pressure

power spectral density function and hence the response spectrum.

It affects also the decay rate of the narrow band pressure cross

correlation at low Strouhal numbers, but this has only a secondary

effect. The modal response at a natural frequency increases with

boundary layer thickness until the pressure power spectral density

reaches a maximum. Thereafter further increases in the boundary

layer thickness will reduce the structural vibration. The concen-

tration of the excitational energy at the lower frequencies, as the I
boundary layer thickness increases, means that the higher order modes

reach a maximum response first, and the response spectra become biased

towards the lover order modes.

Because the total response depends on the vibration in the

predominant modes, and these have low natural frequencies, the total

root mean square displacement does not reach a maximum until the

thicker boundary layers are reached.

(5) The flow velocity affectstie response through the pressure power

spectral density function and the excitation correlation length.

As the velocity increases there is a general increase in the vibration

but, because the excitational energy is distributed over a wider
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frequency range, the vibration spectral density increases more

quickly at the higher frequencies. Above coincidence, further
increases in the flow velocity may reduce the vibration in the
associated modes, the change depending on the net effect of

excitation spectral density and correlation length changes. The

joint acceptance terms do not change very rapidly with flow

I velocity in the neighbourhood of coincidence, so that the convection

velocity must be well separated from the coincidence value if the

vibration is to be reduced significantly.

(6) When the structure is allowed to vibrate in the presence of a static

pressure differential, there is a general decrease in the structural

response, and an increase in the natural frequencies. The change

in the displacement power spectral density function is due mainly

to the change in the effective stiffness of the structure, there

being little change in the panel joint acceptance as this changes

relatively slowly with frequency.

(7) For a given mode order, and an infinite range of values of the

non-dimensional panel length, the maximum response to acoustic

excitation will occur at coincidence when the convection direction

is parallel to the overall standing wave system in the structure,

at a convection angle 8 where 0 <e<90°.

In the case of boundary layer excitation, the maximum response

occurs when O. or 90 . because at other values of 0 the improved

matching between the excitation correlation length and the modal
wavelength is cancelled by the increased effective decay rate of
the excitation correlation function.

For a fixed value of the non-dimensional pa.iel length, the modal

response to either form of excitation mny be a maximum for a value

of 0 in the range 0°<0<90°, but the fundaaental mode is affected

little by changes in the angle of convection.
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(8) Under boundary layer excitation the response spectra of

panels with aspect ratios less than unity are dominated by the

vibration in the fundamental mode. Panels with aspect ratios

greater than unity have displacement spectra which have a relatively

greater contribution from the higher order modes.

The total root mean square displacement increases more rapidly

with flow velocity when the panel aspect ratio is greater than )
unity, than when it is less than unity.

(9) For the structures considered, the vibration in the fundamental

mode was greater for acoustic excitation than for boundary layer

excitation. However, this conclusion may not be applicable when

the panel length is much greater than the acoustic wavelength at

the resonance frequency. When comparing the response to boundary
layer and acoustic excitation, the correlation decay rate may become

more important than the convection velocity. In particular this is

true for a mode when the ratio of the panel length to the excitation

correlation length at the natural frequency has a value close to

that associated with a joint acceptance zero for acoustic excitation.

Thus the relative effect of boundary layer and acoustic excitation

can depend critically on the associated non-dimensional panel length.

(10) It is known that, when random techniques are used in the analysis

of experimental data, certain corrections may be necessary when the

spectrum has a series of resonance peaks. In the present investigation

a series of correction curves have been determined and, for the

measured power spectral density at a natural frequency to be less than

1 0S in error, the filter bandwidth must lie less than the bandwidth

of the spectral peak.

(11) There are several ways of applyirs random techniqies to the

measurement of the damping of structures, but difficulties can arise

which limit the use of each of the alternative methods. The
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investigation has shown that direct spectral analysis methods

are of value only when the filter bandwidth is less than one-

quarter of the bandwidth of the resonance peaks. Measurements

have shown that the excitation-response cross correlation method

is unsatisfactory for very lightly damped structures and that the

response autocorrelation decay method is more accurate, provided

that the natural frequencies are well separated and the modal
S~response is not small relative to that in neighbouring modes.

(12) The presence of an airflow increases the damping of the low

order structural modes, the largest effect being shown in the funda-

mental mode. The damping was unaffected by boundary layer thickness.

The results of the present investigation have extended the range of

information concerning the response of structures to boundary layer excitation,

but further work is required before a complete understanding of the problem

is possible. Several aspects of the problem require investigation and

some of these can be outlined briefly as a guideto future research work.

(a) Published results, and those of the present investigation, show

th.t there is a discrepancy between the measured and predicted effects

of the flow velocity on the structural vibration. In comparisons of

theoretical and experimental results it has been assumed that the

joint acceptance curves for simply supported and fully fixed' panels

are similar in shape. The assumption may not be sufficiently

accurate for large changes in velocity, and differences in the curves

could contribute to the observed discrepancy. Thus it may be

necessary to consider more accurate representations of the panel

vibrational characteristics.

(b) The majority of the available results refer to single panels and,

for use in practical structures, the results have to be extrapolated
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4 to the case of panel-stiffener arrays. Measurements of the vibration

of panel arrays are required under laboratory and full scale conditions

to establish the circumstances under which the extrapolation is valid.

Also, alternative methods have to be determined for the estimation of
S~the vibration of the arrays.

In association with this investigation it may be necessary to

obtain in greater detail pressure correlation measurements for small

values of frequency, and large separation distances.

(c) In the present investigation it has been assumed that the str'uctural

vibration could be represerted by a series of normal modes and the

vibration is dominated by standing waves, which can be considered to

be composed of running anfL reflected waves. Conditions can arise

in which there is no reflected wave, and the panel vibration is

represented by a series of running waves without the presence of

standing waves. The occurrence of standing and running waves has

been nvestigated by Baroudi (1964) and Maestrello (1965,b,c) but the

work could be extended to panel arrays and typical practical structures.

I
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APPENDIX A

Excitation Fields

A.1 Type of Excitation

The measurements of panel vibration have been restricted to two

types of convected random excitation. Interest has been centred mainly

on the response to turbulent boundary layer excitation but acoustic plane

wave excitation has been used for comparison. The acoustic field can be

defined readily but the random characteristics of the boundary layer

pressure field require more detailed study based on experimental results.

The pressure field under a turbulent boundary layer has been measured by

several investigators using flush mounted transducers but the results of

particular interest to this investigation were obtained by Bull (1963) in

the wind tunnel used for the panel response measurements. The results

are in agreement with those of other investigators and include narrow band

correlation measurements. Empirical curves can be fitted to the measured

boundary layer statistical characteristics and the equations to the curves

can be used in the prediction of panel response.

A.2 Narrow Band Cross Correlation Coefficient

Assuming that the pressure field is stationary and homogeneous, a

narrow band cross correlation function can be defined as

T
SRpAL (t•,!93,Tr) Lim 1 f p•(.,t;wF)p6(x+L t+T;wF)dt . . . (A.1)

RPW(l.~T~?) T-.e 2T -T

where pA(xt;m#F) is the filter output when the pressure signal p(x,t) is

passed through a filter of bandwidth Aw and centre frequency ui."

It can be shown, using a method similar to that for the derivation of

equation L(.27), that the narrow band crous correlation function is
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RA(&1,E3,T;WF) = f Z1(w)Z2 (w)S (CI,S 3 ,w)ei dw . . . (A.2)

where S (&,sC3,w) is the pressure cross power spectral density function and

ZI(w),Z 2 (w) are the frequency response functions of two filters centred at

WF" Assume that the two filters are identical,

z*(W)z (W) = Iz(W)1 2

and that they have ideal rectangular pass band characteristics

A• AW

IZ(W)12 = 1 for w < " << -

- 0 for all other w,

Then equation (A.2) becomes

R (l, Sp(;FIS3,F )eXFTA + +S (&IC 3,-wF•el AW

that is, dropping the suffix F,

R -9-3TW 2(c (ýIAF3 .w)cOswr+Qp(&I-&3 ,w)sin WaT) AW

S 21 S(CI A3 coa(w-r-B) &AW (A-3)

where - CP ep
e-ii A4

A narrow band cross correlation v-oefficient can now be defined as

SR . (0 0,0;•)

"i P co,4s,-)) . (Aos)

wherT 8 W SP(00.0 is the excitation power spectral density.
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When the pressure field has the form of convected turbulence, the

simplest case is that of frozen turbulence convected with velocity Uc in

the positive x, direction. The cross correlation function has the property

R (tI,t 3 ,T) = R (O,E 3 ,T-TO) where To U
p p U c

- Rp(tl-UcT,E 3 ,O) . . . (A.6)

The cross power spectral density function becomes, from equation (A.6),

S f•,Sm R 1 t ,C3,T)e-iWT dT

p 2 R p(P

iWE1  00w~
e 2wU C (El,& 3 ,O)e Uc dCl . . . (A.7)

L 1U

-iW Ia(Z2- '3,I0) • e

Uc e
Uc

@@W

where fl t3 -0) f M R ( 1 ,t 3 ,O)eUc d 1  , and is real, because

R p(EIC3,O) Rp (-&I1,3,O). Comparing equations (A.4) and (A.7),

Uc

Thus for frozen turbulence convected with velocity U in the xidirection

P (p . ,3,T;W . * . S p (W) " " "

For decaying turbulence, Bull (1960) following Harrison (1958), has

shown that the correlation coefficient may be expected to have the form

P((CI.&3.T;w) - ( - ) coB w(r- ULc) • • • (A.9)
pUC Uc C

except at very small values of A and Y when CbC3 are non zero.Uc Uc

lam



It was assumed initially that Uc was constant, but frequency dependent

convection velocities can be used. Correlation coefficients similar to

the form shown in equation (A.9) were used to describe the measured results.

A.3 Boundary Layer Excitation

A.3.1 Nature of Pressure Field

The measurements of Bull (1963) can provide an insight into the nature

of the pressure field which arises fron natural transition from laminar to

turbulent flow on a flat wall.

The turbulence can be considered to be composed of pressure eddies

of different sizes or wave number. The eddies are convected in the free

stream direction, with a range of convection velocities associated with

each wave number. However the experimental results indicate that the

range of convection velocities is sufficiently narrow for a unique value of

the convection velocity to be associated with each wave number. In the

evolution of the pressure field the smallest eddies predominate initially,

but they decay fairly quickly and the large scale eddies are then of

importance. The large eddies decay relatively slowly at a rate which is

independent of frequency. This division into small and large scale

turbulence is associated with two forms of narrow band cross correlation

coefficient.

A.3.2 Statistical Properties

The statistical properties of the pressure field can be measured in

either the time or frequency domain, and, theoretically, these are equivalent

through the Wiener-Khinchin relationships. In practice it is often easier

to measure the cross correlation function than the cross power spectral

density function, which can then be obtained by Fourier transfomrtion.

Alternatively the narrow band cross correlation function, as defined in

equation (A.l), can be measured, and this was the method adopted by Bull(1963).

The measured boundary layer pressure power spectral density is shown

in Figure A.1, non-dimensionalised in terms of the boundary layer thickness 6,

i4
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mean square pressure <p2 >, and free stream velocity U0o The power spectral

density is expressed in terms of the measurable single sided function G (w)

wp

where uý>_0, and Gp(M = 2Sp(W). GM• is defined by

G(w) M 2_ f R(T) cos w•dT
7r6

The spectrum is smooth and has a broad maximum in the region of W6 2. From

the tunnel characteristics in Table 3.1, Figure A.1 gives the exci ation

spectra shown in Figure A.2 for the panel positions in the tunnel working

section, where, for convenience, the spectral density is expressed as

G (f) = 2w G p(). The spectra were estimated for positions corresponding

to the centres of the panels and it is assumed that the spectral densities

are effectively constant over the panel area. The measurements in Figure A.1

were carried out on a rigid wall but, in the absence of information, it has

been assumed that the boundary layer pressure field is unchanged by the

presence of the flexible panel. The vibration amplitudes of the panel are

very small relative to the boundary layer displacement thickness 6, so

distortion of the pressure field should be small. The spectral shapes in

Figure A.2 assume that there is no interference from the acoustic field in

the tunnel. It is shown in Chapter 3 that this can occur at low frequencies

and corrections have to be made where necessary. The overall hydrodynamicI. -3pressure in the boundary layer is approximately 124dB re 2 x 10- dynes/sq.cm

for a flow velocity Uo a 329 ft/sec., and 132 dB for U 0 540 ft/sec.

The amplitude of the measured narrow band cross correlation coefficient

in the longitudinal direction is shown in Figure A.3 and, except at low

values of the results can be represented approximately by the single
exponential •unct ion" O-w(l

U
10 p1.,o,;W)l a e ýc . . . (A.10)

At low values of Al the measurements diverge from the fitted curve,Uc
the divergence occrin at a higher value of for a higher value of

In Figure A.A the correlation amplitude at low 2j1 is shown as a function of
Uc
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and a single exponential function

-0.037L&L1

IP Q(,O.T;W)I = e (A.u)

has been fitted. The data in Figure A.3 can now be separated into two regions,

the boundary between the regions being given approximately by the condition
WO = 0.37. When W-- > 0.37 the correlation coefficient can be expressed as
Uc --- O
a function of w equation (A.lO), and when - < 0.37, the coefficient is
independent of frequency and is a function A only, equation (A.11).

Curves of constant, are represented by the broken lines in Figure A-3.

The narrow band cross correlation measurements in the lateral direction

can be similarly divided into two regions as indicated in Figure A.5. The

measured correlation amplitude can be represented again by a single exponential

function, given by

- 0.715wkII
""P (o,&3,T;W)l e Uc . . . 12)
p

except at low values of Y when the results diverge from the fitted wave.
U

Comparing Figures A.3 A.5, or equation (A.10) and (A.12), the correlation

amplitude decays more rapidly with distance in the lateral direction than in

the longitudinal direction.

In Figure A.6, an empirical curve has been fitted to the measured correlation

coefficients at small The data in the figure differs from that in the
U?

preceding three figurescbecause the results have a non-zero asymptote at large

and the equation for the curve is 6' . . . (A.13)

IPCO .3.TIW)I 0.28 + 0.72 e

The correlation amplitude curves derived from equation (A.13) are shown in

Figure A.5 as broken lines. Physically it is difficult to explain the presence

of the non-zero values of the cross correlation coefficient at large

and they may result from low frequency acoustic disturbances in the wind

tunnel. Under free conditions it is probable that the lateral cross

correlation coefficient will approach zero for sual Ta and large .g
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However, equation (A.13) represents the excitation field in the wind tunnel

and will be used in the estimation of the panel vibration. The effect of the

constant term in equation (A.13) on the panel response is discussed in

Section 2.6.3. The boundary between the regions of validity of equations

(IL.12) and (A.13) is not well defined in the lateral direction and, from

Figure A.5, is given by the condition

Uc

k31 a-k 3  - (9.1 loge ' )- 5.45) 6 ... (A.l4)

Thus, when k31M3 the amplitude of the narrow band lateral cross correlation

coefficient is given by equation (A.12) and whenl 3I < k3 , by equation (A.13).

j The measurements of Bull (1963) indicate that, at least for high values

of the amplitude of the cross correlation coefficient can be represented
Uc,

fairly accurately by

At low AL equation (A.15) is less accurate but, from the limited data
Uc

available, it still seems to be a reasonable approximation.

The frequency dependent convection velocity for the turbulent pressure

field is shown in Figure A.7 and the measurements are found to be fairly well
represented by the equation

- 0. 89w6*
U Uc *uW() (0-5.59+0.30e Uo )Uo . . . (A.16)

The value of the convection velocity given by the above equation is assumed

to be associated with a unique pressure eddy wave number.

A.I4 Acoustic Excitation

The grazing incidence acoustic field in the siren tunnel has a restricted

frequency range with lower and upper cut-off frequencies determined by the

design of the tunnel and siren. The low frequency limit occurs atapproximately

100 c.p.s., in the neighbourhood of the theoretical cut-off frequency of the
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acoustic horn. At high frequencies the acoustic output of the siren

is limited by the response of the modulator coil and the spectrum falls

off sharply at frequencies greater than 800 c.p.s. The shape of the

noise spectrum can be controlled, within the limited frequency range,

by the use of electronic filters in the excitation circuit of the

modulator coil. A typical third octave spectrum for the acoustic

excitation field is shown in Figure A.8. The figure contains also the

spectrum of the noise field due to the jet noise effect of the air

flowing through the siren orifices when the airflow modulator is not

operating. Comparing the two spectra in Figure A.8 it is seen that at

frequencies greater than 1,500 c.p.s. the noise is essentially that due

to the jet noise effect. The excitation pressure power spectral density

curve, corresponding to Figure A.8, is presented in Figure A.9 and the

data can be used to determine the measured panel vibration in terms of

the response to unit excitation.

The pressure distributions and correlation coefficients in the siren

tunnel are contained in the calibration charts of Clarkson and Pietrusewicz

(1961). Over the panel area the overall noise level will be constant to

within 0.5 dB, and in narrow frequency bands, to within 1.0 dB. The

calibration charts show that, for frequencies below 1,100 c.p.s. and for

separation distances equal to the maximum panel dimension, the lateral

narrow band cross correlation coefficient has a value which is within

5% of unity, but there is a greater divergence, of the order of 15%, from

the ideal of an undamped cosine correlation form in the longitudinal

direction. As the frequency increases the acoustic field is distorted

by reflections from the tunnel walls and the correlation coefficient

diverges from the ideal of freely propagating plane wives. Hovever, in

the prediction of the panel vibration it is assumed that the narrov band

cross correlation coefficient is an undecaying cosine in the longitudinal

direction and has a value of unity in the lateral direction. Within

experimental accuracy, and for the limited frequency range considered, a

comparison of the theoretical and experimental vibration spectra, based on

the above assumption, should be ralid.



A.5 Sumar

From the measurements of the statistical properties of the boundary

layer pressure field, the narrow band crozs correlation coefficient can

be expressed in a general. form which can be modified to fit Cther types

of convected excitation. The cross correlation coefficient has the form

PQlA3,r;W) = IPp(lE3,T;c)I Cos -(T . ) • • (A.17)
C

for convection with velocity U cin the positive x1 direction.

The coefficient amplitude can be written in separable form

IPp=( ;,,,)l - I(-,O,T;w)I - Ip(o,*3 ;")l •A.l8)

The amplitude of the longitudinal narrow band cross correlation coefficieilt

is

"a e•2c .*. . (A.19)

-,.-- < kI (A.20)
U

c

where aI U a2  *and a1a2 are ~onstants.

The amplitude of the lateral narrow band e ,es ' .rrelation coefficient

is

I0(o.E3.T;w)I - &"31C31 ;.-! _k . . • (k.3)

"c + deea.l4I3 1 3 l ' . . . (A.22)

where a3 U4 and 03,44 are constants.

The convction velocity Vc is a function of angular frequency w

and is given by - _,___

U U N)- ( ÷1 .•e U )u0  . . . (A.23)
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The particular values of the coefficients associated with the boundary

layer measurements of Bull (1963) are

01= 0.1 c = 0.28

02 = 0.037 d = 0.72

U3 = 0.715 K1 = 0.59

a4 = 0.547 K2 = 0.30

M5s= 0.89

and the ranges of'validity of the correlation coefficients in equations

(A.19) to (A,22) are

Uk, 0.37, k3  (9.1 log- 5.45) P

For a convected pressure field which is not a boundary layer, the

terms containing the boundary layer displacement thickness 6 do not

a appear an.] the euo=relation coefficient forms reduce to equations (A.19)

Sd (A.,!). The convection velocity Uc will be given by equations

which differ from equation (A.23), and ma.- be independent of frequency

as in the case of an acoustic ,_ld. Theoretically, for acoustic plane

'waves propagating in the x! direction, al a3 0 and

! J•(1P0,,,w)I 1P

I
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JPPENDIX B

r ! Effects of Filter Bandwidth in Spectral AnalXsis

B.1 Introduction

In the measurement of power spectral density, one of the important
• sources of error is the finite band oidth of the analysing filter. The

choice of filter is usually coitrolled by two requirements. The bandwidth

must be narrow so that there is no loss of spectral resolution but,

conversely, the bandwidth must be wide so that the statistical uncertainty

error is small. When the data record is short and there is an unlimited

choice of filter bandwidth, an optimum must be achieved to obtain a balance

between spectral resolution and statistical reliability. Alternatively when

the record is sufficiently long, and the only criterion is the required

spectral resolution, there may be only a limited number of filter bandwidths

available. In such circumstances the filter bandwidths used may be

significantly greater than the bandwidths of the spectral peaks, and

corrections have to be applied if more accurate estimates of the power

spectrum are required.

Under the assumptions of ergodicity it has been shown by Morrow (1958)

that the standard deviation error cs for the power spectral density function

G(f) is

1
Es v¶Af.T) G(f)

where Af is the filter bandwidth and T is the averaging time. In the panelr vibration analysis the narrowest filter used had a 1.2% bandwidth which, at

a frequency of 500 c.p.s. is equivalent to Af a 6 i.p.s., and the integrating

time was 50 seconds. The statistical error wLs t 6%, indicating good

statistical reliability. However the filter bandwidths were large relative

to the bandwidths of the resonance peaks, and corrections had to be made to

the measured spectra.
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B.2 Single-degree of Freedom System

If the spectral density function is expressed in terms of frequency f,

the Wiener-Khinchin relations are

G(f) = 4 f R(T) cos 2rfrdT
0 . . . (B.1)

R(T) = f G(f) cos 2rfTdf
0

where G(f) = 2S(f) = 4wS(w) is the spectral density function which is

measured in practice.

For a system with one degree of freedom, the displacement spectral

density function is

G (f) t IH1(f)1 2 Gp(f) . . . (B.2)

where HI(f) is the complex response function and can be expressed in terms

of viscous or hysteretic damping. G p(f) is either the direct excitation

spectral density function for single point excitation or has a form similar

to a generalised force for distributed loading.

When the vibration is analysed with a filter of bandwidth AfF and

characteristic H2 (f), the measured spectral density function is

G'(f) f - ]H2 (f)12 Gd(f) df
d Af 0

1 •F 1H1(f)1 2 1H2 (f) 2 Gp(f) df o . (B.3)

= f0 pH~)2I2f

where the dash denotes a"measured" value.

Within the accuracyof the measurements, the filter can be assumed to

have the characteristics of an ideal rectangular filter.
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Thus H 12 f =F< f < f +AL

Ths12(f)1 = - 2= =F 2

= 0 for all other f

where fF is the centre frequency of the filter.

If it can be assumed that the excitation spectral density is constant

within the range of integration, i.e. within the filter bandwidth, then

G p(f) = constant = K' . . . (B.5)

This is valid for most forms of random excitation.

Substituting equations (B.4) and (B.5) into equation (B.3) gives

fF 2

Gd'(f) - - IH,(f)1 2 df . . . (B-.6)

fF- 2

Assume that the damping is hysteretic and that IHI(f)1 2 has the

normalised form

V 2f 4
IHI(f)12 - - . • . • (B.T)

r fr rr

with a maximum value of unity at f - fr. Then, from equations (B.6) and

(B.T)
tAfr' ~fF + g..•

SF 2 2 fr4SK' Vr r (B8

r' rr(GfZ(f) -" +z)+V f df .• •fF -rfz Vrfr

fF 2

When the definite integral in equation (B.8) is evaluated, and the

filter centre frequency fF is replaced by f fox convenience, then
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V2 Klog

GITf)r K _ + tanl e (B. 9)
r f r 2 t(~T r+lj (T r1))J

where T 2  1+ V 2
r r

0-(2 +-)) (2f)(T +(-S)2 _ (fr)2 r

rr fr rrr .r.r

) = '1- ()2 + (fX )2) +- T(LfX )2 + V 2- 'r' 2fr ' r fr + r

r r r f r r

Evaluation of equation (B.9) for 1-- i gives the measured peak
f

spectral density G'(fr). r

For comparison with equation (B.9), the true response spectral density

is, from equations (B.2), (B.5) and (B.7),

KOV 2f 4
Gd(f) r r (B.1l)

(f 2 -f 2 ) 2 +v 2 f 4

r r r

and the reduction in resolution at a given frequency f is given from

equations (B.9) and (B.1I) by the ratio

log~~~~ .- .aj (B.12)
2Trfr - ) 2 42(Tr+lb) •(Tr-J4)

-r f6r
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The loss of resolution due to filter bandwidth effects is illustrated

in Figures B.1 and B.2 where the measured response peaks for two single

degree of freedom systems are predicted from equation (B.9) and compared

with the true curve given by equation (B.11). It is assumed in all cases

that the excitation has unit spectral density, i.e. K'= 1, so that the

peak of the true curve is unity. The filters used in the calculations

have bandwidths of 1.2% and 2.0%, corresponding to the filters available

for the vibration analysis. In Figure B.1, where the loss factor v = 0.012r

implies a resonance curve bandwidth which is similar in size to the filter

bandwidths, the distortion of the true peak is not large, but the predicted

curves show the general trend of reduced peak spectral density and increased
resonance curve bandwidth. For the lower loss factor of v = 0.002 in

rFigure B.2, there is considerable distortion by both filters and there is

a large reduction in resolution. In the neighbourhood of the natural

frequency, the measured peak is considerably lower than the true peak, but

a reversal occurs close to the natural frequency and the measured spectral

density exceeds the true value at all other frequencies. However, it should

be observed that the filter bandwidth effect is restricted to a narrow

frequency range in the neighbourhood of the natural frequency of the peak,

and that there is only a small difference between the true and measured

spectra in the lower regions of the resonance curve. For the conditions

of Figure B.2, the true and measured values of the spectral density

function are approximately equal when the frequency differs from fr by
more than 2% of f"

Equation (B.12), which predicts the loss of resolution due to filter

bandwidth, can be used to correct the measured spectral peaks and

corrections of this form have been computed for filters with 1.2% and 2.0%

bandwidths. The corrections are shown in Figures B.3 and B.A for a series

of damping loss factors covering the range encountered in the experimental

S measurements. It is seen that, even for the 1.2% filter bandwidth, there

can be large resolution corrections at the natural frequency when the

damping loss factor is less than v = 0.004. These curves can be used to
r

correct the measured response of a single degree of freedom system or the
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response of a multi-degree of freedom system when the vibration can be

considered to be due to motion in only one mode. The disadvantage of the

method is that the value of the damping loss factor is required before

resolution corrections can be estimated. It will be shown in Section B.A

that, in principle, the true damping can be estimated from the measured

bandwidth of the spectral peaks but that in practice the results have an

unacceptably low degree of accuracy. Thus alternative methods of

estimating the damping have to be used before resolution loss corrections

can be applied.

B.3 Multi-degree of Freedom System

In some circumstances the assumption of one degree of freedom is not

valid and the method of correction for reduced resolution must be modified.

A simple, but rather crude, modification which is suggested here is similar

to the corrections proposed in the amplitude response curve method for the

discrete frequency determination of modal damping.

In the neighbourhood of a natural frequency of a multi-degree of

freedom system, the displacement power spectral density function can be

represented as the sum of the spectral density function Gd(f) for a single

degree of freedom system and the background vibration spectral density

function G (f) associated with the off-resonant vibration in the other
b

degrees of freedom. The true spectral density function will be

SGT(f) Gd(f) + Gb(f) (B.13)

where, for single point excitation, Gd(fj is given by equation (B.11).

For simplicity, and without much loss of generality, assume that

Gb(f) is independent of frequency, and that

Gb(f) * constant * K" Gd(fr) . (B.l4)

where Gd(fr) is the peak value of Gd(f), i.e. from equation (B.11),

Gd(f) ( K1.d r
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The assumption that the off-resonant vibration has a constant contribution

to the spectral density function is similar to the assumption of constant

amplitude contribution in the amplitude response curve method for the deter-

mination of modal damping, but it has greater validity because there is no

problem of phase matching between the resonant and off-resonant contributions

in random vibration.

Following the arguments of Section B.2, the true spectral density for

unit excitation is

v2f4
GT(f) r r + K" . . . (B.15)

r r r

and the measured spectral density is

V 2  log -+
r "°)e • + tan'le

T2T '~2vt(Tr+1) t~T -1)) + K
S. . (B .1 6 )

S~Equations (B.15) and (B.16) have been used to calculate the errors in

the measured peak values and these are shown in Figures B.5 and B.6 for the

1.2% and 2.0% bandwidth filters respectively. It can be seen from the

figures that in most cases the effect of the background vibration is negligible

when the background spectral density is less than 10% of the peak value, i.e.
• when K"<0.1.

In practice the value of K" is estimated from the spectral troughs

adjacent to the peak under investigation and Figures B.5 and B.6 are used

to predict the true spectral peaks from the measured values. However the

correction can be applied only if the modal damping is known, from either

the measured bandwidth of the resonant peak, or from other sources. An

example of the use of the corrections is shown in Table B.1 where data

are taken from measurements of panel response to siren excitation, the

spectral analyis being carried out with filters of 1.2% and 2.0% bandwidths.
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Before corrections for loss of resolution were applied, the 1.2% filter

gave peak spectral densities which were 30% to 50% greater than those

obtained with the 2.0% filter. When the corrections were applied from

Figures B.5 and B.6, the spectral densities increased by factors of 2 to 5,

and the results for the two filters agreed to within +9%.

B.A Bandwidth of Resonant Peaks

The preceding discussion, particularly with respect to Figures B.1 and

B.2, has shown that the bandwidth of the filter has an effect on the band-

width of the response resonant peaks as well as on the spectral density of

the resonance curve. The difference between the true and measured band-

widths of the spectral peaks is important in the estimation of modal damping,

and the relationship between the two bandwidths can be determined theoretically.

Assume that the system has only one degree of freedom and that the measured

spectral density function is given by equation (B.9). Denoting the measured

bandwidth of the resonant peak by AfM at the half power point, then AfM

satisfies the equation

G (d + G" (fr) . . . (B.17)r
which can be solved numerically. The resulting relationship between the

measured and true resonance bandwidths, Afm and AfT (where AfT a vrfr) is

shown in Figure B.7 for two filter bandwidths AfF - 0.1 fr and 0.01 fr" The

results are seen to be virtually independent of the filter bandwidth AfF/fr,

and are similar to results which Forlifer (1961) obtained, with certain

approximations, for viscous damping. Figure B.7 can now be used to predict

the value of AfT, and hence the modal damping, when the measured bandwidth

AfN is known.

For practical cases the values of AfT estimated by this method may be

subject to large errors, and the method is useful in a very limited range of

conditions. As an example, consider a system with a hysteretic loss factor

"rv 0.006 and an analysing filter with a 1.2% bandwidth. Then Aft? 2.0

i -170-
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and, from Figure B-., 0.895. When the vibration of this systemand frm Fgur B.7,AfM

is analysed, AfM will be measured to an accuracy of, at best, +10%.

Inspection of Figure B.7 shows that the resultant accuracy of estimation

of AfT will be of the order of -35% to +235%, which is quite unacceptable.

Therefore only when Aff < 0.5 (or ALE < 0.45) can this method be used with
AfT AN4

reasonable accuracy. It could not be used for the vibration analysis of

the panels used in these experiments, and other methods (Chapter 4) were

used.

B.5 5

The effect of the finite bandwidth of the analysing filters on the

resolution of peaks in measured spectra has been studied theoretically and

found to be large for the conditions in the present experimental investi-

gations. Corrections to the measured spectral density have been derived,

to compensate for the loss of resolution. Theoretically it is possible

to estimate modal damping from the measured spectra but it has been shown

that in practice the errors wili be unacceptably large in the present

experimental analysis. Ideally the filter bandwidth should be less than

one quarter of the resonant peak bandwidth.
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Appendix C

Panel Natural Frequencies and Mode Shapes

C.1 Material Properties

The panel natural frequencies and mode shapes are required for two

reasons. A comparison of measured and estimated frequencies and mode

shapes will indicate the type of boundary conditions which exist in the

expvrimental panek. Also the true natural frequencies are required for

"j the prediction of the response of the panels to boundary layer and

acoustic excitation.

The panels were made from mild steel which showed the grain pattern
associated with rolled metal sheet. The presence of a grain pattern

suggested that the panels would not possess isotropic elastic properties

and this was confirmed by measurements of Young's modulus. The modulus

was measured in directions parallel and perpendicular to the grain

direction using standard methods, the measurements being repeated for

several specimens to reduce the errors due to misalignment of the very thin

specimens. The results in Table C.1 show that the elastic modulus differs

by up to 15$ in the two directions, the suffix m in I denoting the value

of the Young's modulus in the direction of the major axis of the panel, and

the suffix a the value along the miror axis.

It was not possible to measure Poisson's ratio o with a reasonable

degree of accuracy, so a value o = 0.3 vas assumed for all cases. The

Serror incurred by this asumption is negligible becaose Poisson's ratio has

only a small effect on the predicted natural frequency. Tbe panel density

was measured using standard methods.

C.2 Estimation of Natural Freauencies and Mode Mhayes

There are weIl established techniques for the estimation of natural

frequencies and mode shapes of rectangular panels with various boundary

-12
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conditions, and the method of Warburton (1954) has been used to predict

the vibrational characteristicR of the experimental panels.

Warbiuaton assumes that the plates are isotropic, elastic and of a

uniform thickness which is small relative to the wavelength of the vibration.

The analysis is based on the ordinary theory of thin plates. He assumes

further that the waveforms of the vibrating plate can be represented, only

approximately in many conditions, by the waveforms for beams with directions

parallel to the plate axes. The characteristic beam function assumed by

Warburton for a beam freely suppoited at x = 0 and x = L is

*m(X) = sinm L. (C.1)

where m = 1,2,... is the mode order given by the number of modal half

wavelengths.

For a beam with fixed end conditions at x =0, L

*m(x) = cos Ii (cosh x4- cos + tan Xi(sinh L -sin ))
2 L

• (c.2)

for m = 1, 3, 5,

where tan 2 + tanh = 0.
2 2

and

m(x) a sin ~ (cosh .-x Cos liý- cot XL(sinh 12" - siny2Lx

. (C.3)

for m * 2, 4, 6,

where tan - tanh 0.
2 2

The panel natural frequencies are determined from the beam functions

and the equation of motion of the plate, using Rayleigh's method. For the

experimental panels, natural frequencies were estimated for simply supported

and fully fixed edge ronditions, using the mean value of Young's modulus
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shown in Table C.l. The predicted frequencies are shown in Table C.C.

Under ideal conditions the (r-s) and (s-r) modes of the square panel will

combine to give modal patterns having nodes which are not parallel to the

panel edges. However very small deviations from the ideal will separate

the natural frequencies of the (r-s) and (s-r) modes sufficiently for

the interaction to be prevented. Warburton shows that after a 2% change

in panel aspect ratio the interaction is negligible. Small irregularities

in the structure of the material will have similar effects, especially
when the panels are thin.

The work of Warburton was extended by Hearmon (1959) to include the

case of orthotropic plates which have three mutually perpendicular axes of

elastic symmetry, two of which lie in the plane of the plate and are

parallel to the respective sides. The third axis is perpendicular to the

plane of the plate and, for thin plates and small deflections, can be

ignored. Hearmon considered characteristic functions similar to those

assumed by Warburton but expressed them in the combined form

cosh3L cos y3L -k' (sinhL -x sin--- C~

L L L L

for m > 1

where k' = 0.982; y' 1 4.730 when m - 1
3

k' - i Y;y' (m + )w when m > 23 J 7
From Hearmon's results the panel natural frequencies were estimated

using the measured values of Young's modulus in the directions of the panel

axes, and they are contained in Table C.2.

When a panel is backed by a rectangular cavity the vibrational

characteristics differ from those estimated for "in vacuo" conditions.

The effect of a cavity has been studied theoretically by Pretlove (1965)

for the volume displacing modes, the modes which are most likely to be

affected by the change in the surroundings. The effect will be greatest

in the case of the fundamental natural frequency. Pretlove shows that, if
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the "in vacuo" fundamental frequency is less than the open ended acoustic

mode frequency of the cavity, and if there is no acoustic coupling of the

panel modes, then the fundamental frequency of the panel is increased. At

higher order modes Pretlove shows that a decrease in the panel natural

frequencies can occur, but suggests that the presence of slight air leaks

could destroy the cavity effect at all frequencies.

C.3 Measured Natural Frequencies

The natural frequencies and mode shapes of the experimental panels

were measured using discrete frequency excitation methods described in

Chapter I. The exciting force was provided by an electromagnetic coil

wound on a permanent magnetic core. The presence of the permanent magnetic

field produced a static deflection of the panel as shown in Figure C.1,

the deflection increasing as the gap between the exciter and panel surface

decreased, but the associated changes in the natural frequencies were less

than 0.8%. The natural frequencies were determined with an exciter-panel

gap of 0.625 inch for the lower order modes, decreasing to 0.25 inch at the

higher frequencies, so that the presence of the exciter had a negligible

effect on the magnitude of the natural frequencies. During the measurement

of the natural frequencies, the vibration amplitude did not exceed 0.001 inch

and the ratio of vibration amplitude to panel thickness did not exceed 6.7%.

Thus, from the work of Hu-Nan Chu and Herrmann (1956) on simply supported

plates, the vibration should be essentially linear, and this was confirmed

by monitoring the vibration on an oscilloscope.

The natural frequencies of the experimental panels are shown in Table C.2

for the environments used in the modal damping measurements. The free-free

surface condition, when the panel was suspended away from noise reflecting
bodies, represents most closely the theoretical "in vacuo" condition.

Comparing the results with the frequency estimates using Warburton's method,

the measured frequencies are much closer to those predicted for fully-fixed
boundary conditions than those for simply supported edges, which suggests

that the panel has essentially fully-fixed edges. In the lover modes, the

square panel has frequencies fr, and fsr which are fairly well separated
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and this can be explained partly, from Hearmon (1959), by the orthotropic

Young's modulus. When the measured frequencies are compared with

estimates using Hearmon's method, the experimental values are generally

lower, but the difference is less than 10%. It is to be expected that the

theoretical methods might overestimate the true frequency to a small

degree but the larger discrepancy suggests that the panels do not conform

completely to fully-fixed conditions, or that the effective boundary,

because of small irregularities in the bonding, does not lie accurately

on the boundary formed by the edge of the rectangular hole in the carrier

plug. However, the discrepancy is not large since slight irregularities

in the material will have an appreciable effect on the thin panels.

When one face of the panel was enclosed by the pressure equalising

box, the measured natural frequencies showed a small increase, the change

being most significant at the fundamental frequency, where increases as

large as 5% were observed. The box is similar to the rectangular enclosure

discussed by Pretlove but has a large leak to the vacuum pump. The open

ended acoustic mode frequency for the combined depth of the plug and the

box is approximately 1,020 c.p.s., which is greater than the fundamental

natural frequencies of the 3.5in x 3.5in and 4.Oin x 2.75in panels, but

the acoustic natural frequencies of the complete pressure equalising system

are more difficult to predict. However, the measurements suggest that

the presence of the box increases the effective stiffness of the panel, but

by only a small amount.

r Table C.2 contains mean values of the natural frequencies which were

obtained from the spectral analysis of the panel response to boundary

layer excitation for flow velocities of 329 ft/sec and 540 ft/sec. The
values agree closely with the discrete frequency measurements, the small

differences in some modes being due, possibly, to slight changes in panel

temperature in the presence of the airflow.

C.A Measured Mode Shapes

The panel mode shapes were measured by traversing the capacitance

probe across the face of the panel, and measuring the vibration amplitude
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at each position. The finite diameter of the probe did not permit the

displacement to be measured close to the boundaries but, as the main aim

was to establish that the panels had no peculiar characteristics, it was

not considered necessary to use other methods to measure the vibration

close to the edges. The measured mode shapes are shown in Figures C.2

to C.4 for three of the panels, and they are compared with theoretical

shapes for simply supported (equation (C.l)) and fully fixed (equation (C.2)

and (C.3)) boundary conditions.

Every effort was made, by suitable positioning of the exciter and

probe, to eliminate the effects of off-resonance vibration in other modes

but several modes shown in the figures suffer from distortion which can

be attributed to this type of interference. The distortion could be

reduced if the resonant vibration amplitude was obtained from the complex

response plane but, for reasons discussed in Chapter 4, this alternative

method suffered from other disadvantages.

The modal patterns for the panels were observed visually from the

Chladni figures and they are shown in Plates C.1 to C.3. The patterns

were displayed using aluminium filings, and the discrete frequency

exciter was positioned to minimise the off-resonance vibration in other

modes. The modal patterns are clearly formed fcr all panels except the
4 .Oin x 1.Oin panel, but some of the modes of the 4.Oin x 2.T5in panel

(Plate C.2) have distorted nodal lines. In particular the modes of order

(1-2) and (3-1) have very close natural frequencies and it was impossible

to position the single exciter so that undistorted nodal lines could be

obtained. Because of elastic anisotropy and slight irregularities in the

panel material, the modal patterns of the 3.5in x 3.5in panel show no

trace of the modal interaction associated with ideal square panels, and

the analysis of the random vibration of the square panel presents no

problems additional to those for a rectangular plate.

C.5 Sm

The panel natural frequencies, mode shapes and modal patterns have

been measured using discrete frequency excitation. The natural frequencies

S~-181-
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were found to lie within the frequency range determined by simply supported
and fully fixed edge conditions, but the values were close to those estimated

for the fully fixed boundaries. On this evidence, and that provided by the

measured mode shapes, it is concluded that the boundary conditions of the

experimental panels approximate to those for fully fixed structures. In

general the vibrational characteristics of the panel showed no irregularities

and, partly because of the orthotropic elastic properties of the panel

material, the square panel did not possess diagonal or circular modes.

The panel natural frequencies were affected to only a small extent

by the presence of the pressure equalising box, but the frequencies were

influenced by the ambient temperature.

-181
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APPEhDIX D

Panel Root Mean Square Displacement

D.1 Introduction

The theoretical analysis in Chapter 2 has provided a means of estimating

the panel displacement power spectral density function. From Equation (2.45)

the complete spectrum is obtained from a double summation over the mode

orders a, B or, if the cross terms can be neglected, the analysis can be

reduced to a single summation of the joint terms. In the experimental

investigation, narrow band analysis of the panel response gives the measured

displacement power spectrum which can be compared directly with the

theoretical predictions. However, the comparison suffers from the disadvantage

that the magnitude of the spectral density depends critically on the accuracy

of estimation of the modal damping and of the loss of resolution due to the

finite filter bandwidth. When the vibration is compared in terms of the

mean square or root mean square (r.m.s.) displacement associated with a

broad' frequency band, the experimental errors become less important. Thus

a response comparison in terms of root mean square displacement may give a

more useful indication of the accuracy of the method of estimation. Also,

in some circumstances the mean modal response may be required in place of

the spectral density. 4

D.2 Theoretical R.4.S. Displacement

For a single degree of freedom system, the displacement power spectral

density function G(w)d , in terms of the-angular frequency w, is given by

d(W) . IH() 2 G0(W)

where H(w) is the complex response function. The mean square displacement

is then :

;2(t) G (w) d w(
0

: H !(.)12 p (w) d,

S~-183-
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In a multi-degree of freedom system with single point loading,

the mean square displacement can be determined in a similar way, and

the mean square response in mode r is
Co

f= IHr(W)J2 G (w) dw . . . (D.1)
op

where H (w) is the complex response function for the mode of order r.r

Now assume that G (w) = constant = K , and IHr(w)I 2 has the
p pr

form applicable to hysteretic damping with loss factor vS~r

i.e. IHr(w)1 2  = 1(D.2)

r Mr2 2 ((wr 2-W 2 )2 + Vr2Wr4 )

Then equation (D.1) becomes, on integration,

w K

r rrM 2W 3V r
r r r

w KP for v << 1 ••(D.3)
M 2w 39 r

r r r

For a lightly damped panel the main contribution to v(t) comes from
the frequency range in the neighbourhood of w Thus the assumption that

r
G (w) = K , for all w , can be relaxed to apply only to frequencies close

p r
to W r provided that G (w) does not increase by several orders of magnitude

r' p
at frequencies away from w .

r

In equation (D.3), K can be expressed in terms of the maximum displace-
p

ment spectral density Gd(wr) in mode r, where, from equation (D.2)

K M 2V 2W 4 G .. (D.A)p r r r dr
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Substituting equation (D.4) into equation (D.3) yields

w vr w G(W)
dr r

7r- v frGd(fr) . . (D.5)
2 r

so that the modal mean square displacement can be estimated from the

resonant displacement power spectral density.

For distributed random loading, as in the case of panels excited by

a boundary layer pressure field, assume that conditions exist such that

the cross terms in equation (2.45) can be neglected (see Section 2.8).

Then equation (D.1) can be replaced, from equation (2. 45) by

--''(xAt) = 2(x) f IH (w)12 J (w) G (w) dw . . . (D.6)
a0 a a p

Assuming that the major contribution to w-7(x,t) comes from the

frequency range in the neighbourhood of wr, and that in thi6 range

Glpy(w ) and J a(w ) are effectively constant (as is 'he case for boundary

layer excitation and lightly damped structuresC then, from equation (D.5),

the modal mean square displacement ig given !y

w-7(xt) - f G (f') ... (D.7)

ci-' 2 ao a dc

where Gd(f ) is the peak displacerent ovwer spectral density in the mode

of order a, measured at the position x on the panel surface. The total

mean square displacement at position x is obtained from the summation of

equation (D.7) over all a.

Comparing equations (D.3) and (D.4) it is seen that the displacement

power spectral density at the natural frequency is inversely proportional

to the square of the loss factor whereas the modal mean square displacement

is inversely proportional to the loss factor. Thus errors in the

determination of the loss factor will result in smaller errors in the mean
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square displacement than in the displacement power spectral density

at the natural frequency.

The modal r.m.s. displacements have been estimated from equation (D.7)

for the experimental panels, the position x being the quarter point on a

panel diagonal,_x = (11 , .3 ). The results are shown in Tables D.1 to D.8.

The theoretical overall r.m.s. displacements were estimated from the modal

i data shown. This implies that the mean square displacement was integrated

over an effective frequency range of 0 - 3,000 c.p.s. for panels 3, 4 and 5,

and over a range 0 - 3,500 c.p.s. for panels 2 and 6. Thus the results

shown in Figure 5.2 as a function of boundary layer thickness may be

smaller than the true totsa r.m.s. displacements, but the excluded contri-

butions from the higher order modes will be small.

D.3 Measured R.M.S. Displacement

The total panel r.m.s. displacement was obtained directly from the

measured overall displacement signal, and the results are shown in Figure 5.2.

The modal r.m.s. displacements have to be measured using narrow band

filters which are chosen so that sufficient energy is included for the

given mode, whilst ener67 from the other modes is excluded as much as

possible. In the analysis of the experimental results, the modal r.m.s.

displacement was estimated using filters with a 2% bandwidth, and the results

are contained in Tables D.1 to D.8. The filter bandwidth may appear to be

narrow but it is considerably wider than the bandwidth of many :f tle

resonant peaks in the displacement spectra. Further the filtered signal

contains a negligible contribution from the neighbouring re-or.ance peaks,

except in a small number of cases. The effect of filter bandvidth was

observed by comparing results obtained using filters with Oandwidtns of

1.2% and 2.0%. For a flow Mach number Mo = 0.3, the r.m.s. displacements

determined by thoý two filters differed by less than 12%, except for the

results of several m-odes, identified by asterisks in Tables D.1 to D.4.

This difference can be compared with a theoretical difference of 30% for

a signal of constant spectral density. When zhe two filters give results

which differed by more than 12%, the larger difference was not recessarily

I -186-
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due to the use of filters with too narrow a bandwidth. In some cases the

difference occurred because the 2% bandwidth filters allowed the inclusion

of contributions from very close resonant peaks. Three of the panels had

mode pairs whose natural frequencies were so close together that the r.m.s.

displacements in the individual modes could not be measured. For these

modes the r.m.s. displacement was measured for each mode pair and, in the

* Tables, the results are associated with the mode which has the larger

theoretical response of the pair. Such mode pairs are the modes (2-1)

and (1-3) of panel 3, (2-3) and (3-2) of panel 4, and (1-2) and (3-1) of

panel 5.

A comparison of the results in Tables D.1 to D.8 shows that in general

the theory overestimates the response, the ratio of theoretical to measured

modal r.m.s. displacement being mainly in the range of 1.0 to 2.0. The

difference will be due partly to the practical impossibility of measuring

the full modal displacement, and partly to the use of simply supported

modc shipes in the theoretical investigation (see Section 5.1.2). A

detailed inspection of the results shows that the theory predicts quite

closely the variation of modal r.m.s. displacement with boundary layer

thickness (Figures 5.3 and 5.4), but that the estimate change of response

with Mach number is slightly greater than that measured. However, the

effect of Mach number cannot be assessed with confidence because results 1
are available for only two flow velocities.
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Panel :4.0 x 275"xo.o•5I

x .10" U

0A yMO 688,
. UO = 329 ft Isec

S6 . 1"400

k mr given by eqn. (2 65)

U

-! 0.1 --

a. -0212

03 m,r 2,3

-0.4

Fig.2,22 Imaginary part of longitudinal cross acceptance
calculated for panel 5 under boundary layer
exc itation.
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Fig. 2.23 Real part of isteral cross acceptance calculated for
panel 5 under boundary layer excitation.
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PANEL: d4x 2.75)x O015*
x,:1.-0 x3 :0.688"

0- - - U6:329ft/Sec -1"406'

It MODE ORDERS
U - (m-n) = (2-1)

X (r-S ) j(5-1)

l ! -(m-n)- (1-2)::) I ! :(r- s) :(2-9,)II (2-2)'

U vii

Ii j

IIi

I i II

Id-

/100/I! P -7-

Figure 2.24 Predicted contribution of cross terms to response
spectrum for boundary layer excitation: ( m~r)odd.
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PANEL: 4.d'x 2.751 X 0.015P
xI -i.od x3 = 0.688"

Uo = 329 ft.sec.

o MODE ORDER (m-n)..(1-2)

C(r-s),,(3-2)

I-
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,w

zw
w- -
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0 500 1000 oo 2000 2500 3000
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Fig.2.25. Predicted contribution of cross terms to response
spectrum ot panel 5 for boundary layer excitation.
(m r )even.
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Boundary Layer Pressure
Fluctuations:-I --. I-3, X-S7"6*

- IM•5, Xn16066"
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Figure 3.2 Background noise In the boundary
layer wind tunnel.
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TUNNEL
• -. _.HOgRN _._SIREN

MICROPHONE •AIR

FPROBE
FRQENCY
SE TROEER AMPLIFIER

jYNE K ERR[

VIBRATION

METE R 
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-r FLWHITE

f "/NOI SEJ ~GENERATOR1

I CATHODE
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OSCILLOSCOK RECORDER VOLTMETER

Figure 3.3 Block diagram of the apparatus for the

measurement of panel response to

acoustic excitation.
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1' PLAN:

x X

II0 0

LI
Typical Pressure
Equalising Holes

(0-125" Diameter)

SECTION XX: Tunnel Interior j4
---------- Wnd Tunnel

See Detail' JA , I.M 5 1? W"l

DETAIL A-"

04 2fr, •0-6 a or

Clamping Plate as

SafeLy Precaution

Figure 3"4 Construction of an experimental panel.
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Figure 3.5 Details of construction of the
equipment for the calibration of
the Wayne Karr -capacitance probes.
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WAYNE KERR PROBE C
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Figu 3.8 Effect of distance between probe and panel on
Wayne Kerr probe calibration.
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Outer: 24threadslinch RubberO'Ring Seal
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Figure 3411 Details of the pressure equalising box
and probe holder.
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Fig.3 -13 Background vibration and equipment noise:
boundary layer excitation.
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SPANEL: 3-5x 3-5x 0-015'

A EXCITATION BANDWIDTH:
-x- 500 -1000 c.p.$.

z -- o-- 500 - 1500 c.p. sF -6- 500 - 3000 C.p.s.

:I \
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Fig. 4.6 Effect of excitation bandwidth on cross
correlation between excitation and response.
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0-02- Panel: 3.5"x 3"5" xO0015" - Mean
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Figure 4.9 Panel Damping In the Preumnce
of Airf low.
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Figure 5-3 Root mean square displacement in
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PANEL: 2-75Nx 4"O'x 0O0!5 x 1 :'0688" X3 :3.0r

Uj.:329ft ISec. :1"40"
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Flgure 5.6 Response of panel 3 to boundary layer excitation.
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PANEL% 35x35X0-015 x1 :0.8" x 3 :0.8'G"
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Figure 5.7 Response of panel 4 to boundary layer
excitation, (MqO.3)
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Figure 5.9 Response of panel 6 to boundary layer
excitation. (M,=0.3)
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Figure 5.10 Response of panels I and 7 to boundary

layer excitation. (M,=0.3)
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U*: 329ft/ sCc.
Mode m-n

vi- THEORY
XOAV 0 EXPERIMENT(FACTORED BY

UJ ARBITRARY CONSTANTS) 1-1 (x)
SEE TABLE 52 x

z

Z:

S1•111-2 (o)

I! Io

£ U1-3 (A)

Sw i w

r22

•r-

100

a :I ! I I __ _ __ _ __ _ __ _ _i _ __ __ __ __ __ __ __ __ _

00

SBOUNDARY LAYER THICKNESS (INCHES)

S~Figure 5.16 Variation of modal response at natural
I frequencies with boundary layer thickness.
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PANEL: 3-5 x 3-5 x 0.015
U - 329ftisec (MK-03) MODE
x - 0-88•) y - 0.88'

THEORY 2, •
xovAe + EXPERIMENT (FACTORED BY
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Figure 5:18 Variation of modal response with boundary layer
thickness (Panel 4, MuO.3)
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PANEL : 40"x 2x75ý015" X, 0-00 Mode m-n
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Figure 5.19 Variation of modal nmsponse at natural
frequencies wvith boundary layer thickness.
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Figure 5.20 Variation of modal response at natura I
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Figure 5.22(a) Variation of modal response at natural
frequencies with boundary layer thickness.
(Panel 4, M.oO5)
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Figure 5.23 Variation of modal response at natural
' frequencies with boundary layer thickness.
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Panel: 3"5 x 3-5 x 0.015

- *8~X 3 0- 88 rn-n
- Uo - 329 ft sec.

-z1 --- Uo 540 f t sec.
Measured values multiplied by .-- 2-1(q) -"
arbitrary factors 6 ,
See Table 5-2 .V
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Fig.524 Response to unit excitation at natural frequencles as
a function of boundary layer thickness.
(Panel 4, Mo 0- 3. 0-5)
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SEE TABLE 5-2
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Fogur* 5.25 Response to unit excitation at natural frequemies
as a function of oundary kyer thicknbs5
(Panel 5, K=0•:3. 05)
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•,, Figure5.27 Variation of modal response at natural
i! frequencies with flow velocity (Panel 3).
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Figure 5-28 Variat~ion of modal response at natural
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Panel 4.0ý x 2.75* x 0.015'

X1 -1.0 X3 -0.688' Uo0 3,:9ftlsec d(-1-40"

rm-n

X ••

A
U
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.. 10

Theory (Eqn 2.93)
4-1 Cm

SUc Uc

x a Measured values multiplied by sibltrary factors
to 40 00 so 1o0

Angle of convection # degrees

Figure 5.30(a) Effect of angle of convection on response
of panel 5 to boundary layer excitation.
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Panel! 4.0x 2-75 x 0.015
x a 1.0o x 3 - o.688" Uo * 329 ftlsec.

Theory (Eqn. 2S3) -140"
a, . 0.1l a3 - 0.715w

Uc Uc
o v + Measured values multiplied by arbitrary factors.
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w) 2-1(o)
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V
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Figure 530 (b) Effect of angle of convection on response of
panel 5 to boundary layer excitation.
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Panel 35"5x 3.5!x 0.015

x 1 0oe8" X,- 0.88'
u.o- 540 ttIsm A0-o'4S

a," Measurements not corrected for resolution
__ _ _ _ _ _ loss.
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Fig.5'31 Effect of static pressumr dffferentlal on measured
response of panel 4 % boundary layer xcitation.
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-Fig. 532 Ef fact of static pressure dlfterwtlal an measum~d
S~response of panel 5 to boundary layer excltktlon.
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Uo - 540 ft Jsec.
Panel positions I and 3
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Figure &33 E ftect of premi;re differential In wind tunnel
on natural frequencies of panel 4.

I - - .-. 3 L297

ii - ~ ,L



p (I

Panel: 4-Ox 2-75 x 0-015
Uo - 540 tt Jsec.
Panel position 1
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,Flgurn.34 Effect of pressure differentlal In wlncl tunnel
on natural frecquencles of panel S
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Figure 6-2 Response ofpanel 3 to acoustic excitation.
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Figure 653 Response of panel 6 to acoustic excitation,
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Figure 6-6 Response to siren excitation: effect of angle
of propagation.
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Figure C1.Panel static deflection due to permanent
magnetism of the exciter.
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